6. We set the framework.

Our AI solutions are developed and enhanced on grounds of deep analysis and evaluation. They are transparent, auditable, fair, and fully documented. We consciously initiate the AI’s development for the best possible outcome. The essential paradigm for our AI systems’ impact analysis is “privacy und security by design”. This is accompanied e.g. by risks and chances scenarios or reliable disaster scenarios. We take great care in the initial algorithm of our own AI solutions to prevent so called “Black Boxes” and to make sure that our systems shall not unintentionally harm the users
Principle: Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

Published by Deutsche Telekom

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

8. Robustness

Trustworthy AI requires that algorithms are secure, reliable as well as robust enough to deal with errors or inconsistencies during the design, development, execution, deployment and use phase of the AI system, and to adequately cope with erroneous outcomes. Reliability & Reproducibility. Trustworthiness requires that the accuracy of results can be confirmed and reproduced by independent evaluation. However, the complexity, non determinism and opacity of many AI systems, together with sensitivity to training model building conditions, can make it difficult to reproduce results. Currently there is an increased awareness within the AI research community that reproducibility is a critical requirement in the field. Reproducibility is essential to guarantee that results are consistent across different situations, computational frameworks and input data. The lack of reproducibility can lead to unintended discrimination in AI decisions. Accuracy. Accuracy pertains to an AI’s confidence and ability to correctly classify information into the correct categories, or its ability to make correct predictions, recommendations, or decisions based on data or models. An explicit and well formed development and evaluation process can support, mitigate and correct unintended risks. Resilience to Attack. AI systems, like all software systems, can include vulnerabilities that can allow them to be exploited by adversaries. Hacking is an important case of intentional harm, by which the system will purposefully follow a different course of action than its original purpose. If an AI system is attacked, the data as well as system behaviour can be changed, leading the system to make different decisions, or causing the system to shut down altogether. Systems and or data can also become corrupted, by malicious intention or by exposure to unexpected situations. Poor governance, by which it becomes possible to intentionally or unintentionally tamper with the data, or grant access to the algorithms to unauthorised entities, can also result in discrimination, erroneous decisions, or even physical harm. Fall back plan. A secure AI has safeguards that enable a fall back plan in case of problems with the AI system. In some cases this can mean that the AI system switches from statistical to rule based procedure, in other cases it means that the system asks for a human operator before continuing the action.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

3. Principle of controllability

Developers should pay attention to the controllability of AI systems. [Comment] In order to assess the risks related to the controllability of AI systems, it is encouraged that developers make efforts to conduct verification and validation in advance. One of the conceivable methods of risk assessment is to conduct experiments in a closed space such as in a laboratory or a sandbox in which security is ensured, at a stage before the practical application in society. In addition, in order to ensure the controllability of AI systems, it is encouraged that developers pay attention to whether the supervision (such as monitoring or warnings) and countermeasures (such as system shutdown, cut off from networks, or repairs) by humans or other trustworthy AI systems are effective, to the extent possible in light of the characteristics of the technologies to be adopted. [Note] Verification and validation are methods for evaluating and controlling risks in advance. Generally, the former is used for confirming formal consistency, while the latter is used for confirming substantial validity. (See, e.g., The Future of Life Institute (FLI), Research Priorities for Robust and Beneficial Artificial Intelligence (2015)). [Note] Examples of what to see in the risk assessment are risks of reward hacking in which AI systems formally achieve the goals assigned but substantially do not meet the developer's intents, and risks that AI systems work in ways that the developers have not intended due to the changes of their outputs and programs in the process of the utilization with their learning, etc. For reward hacking, see, e.g., Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman & Dan Mané, Concrete Problems in AI Safety, arXiv: 1606.06565 [cs.AI] (2016).

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in AI R&D Principles, Jul 28, 2017

2. Transparent and explainable AI

We will be explicit about the kind of personal and or non personal data the AI systems uses as well as about the purpose the data is used for. When people directly interact with an AI system, we will be transparent to the users that this is the case. When AI systems take, or support, decisions we take the technical and organizational measures required to guarantee a level of understanding adequate to the application area. In any case, if the decisions significantly affect people's lives, we will ensure we understand the logic behind the conclusions. This will also apply when we use third party technology.

Published by Telefónica in AI Principles of Telefónica, Oct 30, 2018

3. Human centric AI

AI should be at the service of society and generate tangible benefits for people. AI systems should always stay under human control and be driven by value based considerations. Telefónica is conscious of the fact that the implementation of AI in our products and services should in no way lead to a negative impact on human rights or the achievement of the UN’s Sustainable Development Goals. We are concerned about the potential use of AI for the creation or spreading of fake news, technology addiction, and the potential reinforcement of societal bias in algorithms in general. We commit to working towards avoiding these tendencies to the extent it is within our realm of control.

Published by Telefónica in AI Principles of Telefónica, Oct 30, 2018