A Accuracy

Accuracy means that companies need to ensure that the AI systems they use produce correct, precise and reliable results. They need to be free from biases and systematic errors deriving, for example, from an unfair sampling of a population, or from an estimation process that does not give accurate results.
Principle: IBE interactive framework of fundamental values and principles for the use of Artificial Intelligence (AI) in business, Jan 11, 2018

Published by Institute of Business Ethics (IBE)

Related Principles


All AI systems that process social or demographic data pertaining to features of human subjects must be designed to meet a minimum threshold of discriminatory non harm. This entails that the datasets they use be equitable; that their model architectures only include reasonable features, processes, and analytical structures; that they do not have inequitable impact; and that they are implemented in an unbiased way.

Published by The Alan Turing Institute in The FAST Track Principles, Jun 10, 2019

· Transparency

As AI increasingly changes the nature of work, workers, customers and vendors need to have information about how AI systems operate so that they can understand how decisions are made. Their involvement will help to identify potential bias, errors and unintended outcomes. Transparency is not necessarily nor only a question of open source code. While in some circumstances open source code will be helpful, what is more important are clear, complete and testable explanations of what the system is doing and why. Intellectual property, and sometimes even cyber security, is rewarded by a lack of transparency. Innovation generally, including in algorithms, is a value that should be encouraged. How, then, are these competing values to be balanced? One possibility is to require algorithmic verifiability rather than full algorithmic disclosure. Algorithmic verifiability would require companies to disclose not the actual code driving the algorithm but information allowing the effect of their algorithms to be independently assessed. In the absence of transparency regarding their algorithms’ purpose and actual effect, it is impossible to ensure that competition, labour, workplace safety, privacy and liability laws are being upheld. When accidents occur, the AI and related data will need to be transparent and accountable to an accident investigator, so that the process that led to the accident can be understood.

Published by Centre for International Governance Innovation (CIGI), Canada in Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

· 8. Robustness

Trustworthy AI requires that algorithms are secure, reliable as well as robust enough to deal with errors or inconsistencies during the design, development, execution, deployment and use phase of the AI system, and to adequately cope with erroneous outcomes. Reliability & Reproducibility. Trustworthiness requires that the accuracy of results can be confirmed and reproduced by independent evaluation. However, the complexity, non determinism and opacity of many AI systems, together with sensitivity to training model building conditions, can make it difficult to reproduce results. Currently there is an increased awareness within the AI research community that reproducibility is a critical requirement in the field. Reproducibility is essential to guarantee that results are consistent across different situations, computational frameworks and input data. The lack of reproducibility can lead to unintended discrimination in AI decisions. Accuracy. Accuracy pertains to an AI’s confidence and ability to correctly classify information into the correct categories, or its ability to make correct predictions, recommendations, or decisions based on data or models. An explicit and well formed development and evaluation process can support, mitigate and correct unintended risks. Resilience to Attack. AI systems, like all software systems, can include vulnerabilities that can allow them to be exploited by adversaries. Hacking is an important case of intentional harm, by which the system will purposefully follow a different course of action than its original purpose. If an AI system is attacked, the data as well as system behaviour can be changed, leading the system to make different decisions, or causing the system to shut down altogether. Systems and or data can also become corrupted, by malicious intention or by exposure to unexpected situations. Poor governance, by which it becomes possible to intentionally or unintentionally tamper with the data, or grant access to the algorithms to unauthorised entities, can also result in discrimination, erroneous decisions, or even physical harm. Fall back plan. A secure AI has safeguards that enable a fall back plan in case of problems with the AI system. In some cases this can mean that the AI system switches from statistical to rule based procedure, in other cases it means that the system asks for a human operator before continuing the action.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

4. Principle 4 — Transparency

Issue: How can we ensure that A IS are transparent? [Candidate Recommendation] Develop new standards* that describe measurable, testable levels of transparency, so that systems can be objectively assessed and levels of compliance determined. For designers, such standards will provide a guide for self assessing transparency during development and suggest mechanisms for improving transparency. (The mechanisms by which transparency is provided will vary significantly, for instance 1) for users of care or domestic robots, a why did you do that button which, when pressed, causes the robot to explain the action it just took, 2) for validation or certification agencies, the algorithms underlying the A IS and how they have been verified, and 3) for accident investigators, secure storage of sensor and internal state data, comparable to a flight data recorder or black box.) *Note that IEEE Standards Working Group P7001™ has been set up in response to this recommendation.

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems in Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017