F Fairness

Fairness and justice, which are core issues in the stakeholder theory, remain paramount for ethical businesses when dealing with AI. As AI systems are able to perform tasks, previously undertaken by humans, in a more efficient and reliable way, the workplace is going to change and it is therefore important that companies pay attention to how this will affect its employees and customers.
Principle: IBE interactive framework of fundamental values and principles for the use of Artificial Intelligence (AI) in business, Jan 11, 2018

Published by Institute of Business Ethics (IBE)

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

Transparency

As AI increasingly changes the nature of work, workers, customers and vendors need to have information about how AI systems operate so that they can understand how decisions are made. Their involvement will help to identify potential bias, errors and unintended outcomes. Transparency is not necessarily nor only a question of open source code. While in some circumstances open source code will be helpful, what is more important are clear, complete and testable explanations of what the system is doing and why. Intellectual property, and sometimes even cyber security, is rewarded by a lack of transparency. Innovation generally, including in algorithms, is a value that should be encouraged. How, then, are these competing values to be balanced? One possibility is to require algorithmic verifiability rather than full algorithmic disclosure. Algorithmic verifiability would require companies to disclose not the actual code driving the algorithm but information allowing the effect of their algorithms to be independently assessed. In the absence of transparency regarding their algorithms’ purpose and actual effect, it is impossible to ensure that competition, labour, workplace safety, privacy and liability laws are being upheld. When accidents occur, the AI and related data will need to be transparent and accountable to an accident investigator, so that the process that led to the accident can be understood.

Published by Centre for International Governance Innovation (CIGI), Canada in Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

Preamble

Two of Deutsche Telekom’s most important goals are to keep being a trusted companion and to enhance customer experience. We see it as our responsibility as one of the leading ICT companies in Europe to foster the development of “intelligent technologies”. At least either important, these technologies, such as AI, must follow predefined ethical rules. To define a corresponding ethical framework, firstly it needs a common understanding on what AI means. Today there are several definitions of AI, like the very first one of John McCarthy (1956) “Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.” In line with other companies and main players in the field of AI we at DT think of AI as the imitation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self correction. After several decades, Artificial Intelligence has become one of the most intriguing topics of today – and the future. It has become widespread available and is discussed not only among experts but also more and more in public, politics, etc.. AI has started to influence business (new market opportunities as well as efficiency driver), society (e.g. broad discussion about autonomously driving vehicles or AI as “job machine” vs. “job killer”) and the life of each individual (AI already found its way into the living room, e.g. with voice steered digital assistants like smart speakers). But the use of AI and its possibilities confront us not only with fast developing technologies but as well as with the fact that our ethical roadmaps, based on human human interactions, might not be sufficient in this new era of technological influence. New questions arise and situations that were not imaginable in our daily lives then emerge. We as DT also want to develop and make use of AI. This technology can bring many benefits based on improving customer experience or simplicity. We are already in the game, e.g having several AI related projects running. With these comes an increase of digital responsibility on our side to ensure that AI is utilized in an ethical manner. So we as DT have to give answers to our customers, shareholders and stakeholders. The following Digital Ethics guidelines state how we as Deutsche Telekom want to build the future with AI. For us, technology serves one main purpose: It must act supportingly. Thus AI is in any case supposed to extend and complement human abilities rather than lessen them. Remark: The impact of AI on DT jobs – may it as a benefit and for value creation in the sense of job enrichment and enlargement or may it in the sense of efficiency is however not focus of these guidelines.

Published by Deutsche Telekom in Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

Public Empowerment

Principle: The public’s ability to understand AI enabled services, and how they work, is key to ensuring trust in the technology. Recommendations: “Algorithmic Literacy” must be a basic skill: Whether it is the curating of information in social media platforms or self driving cars, users need to be aware and have a basic understanding of the role of algorithms and autonomous decision making. Such skills will also be important in shaping societal norms around the use of the technology. For example, identifying decisions that may not be suitable to delegate to an AI. Provide the public with information: While full transparency around a service’s machine learning techniques and training data is generally not advisable due to the security risk, the public should be provided with enough information to make it possible for people to question its outcomes.

Published by Internet Society in Guiding Principles and Recommendations, Apr 18, 2017

1. Demand That AI Systems Are Transparent

A transparent artificial intelligence system is one in which it is possible to discover how, and why, the system made a decision, or in the case of a robot, acted the way it did. In particular: A. We stress that open source code is neither necessary nor sufficient for transparency – clarity cannot be obfuscated by complexity. B. For users, transparency is important because it builds trust in, and understanding of, the system, by providing a simple way for the user to understand what the system is doing and why. C. For validation and certification of an AI system, transparency is important because it exposes the system’s processes for scrutiny. D. If accidents occur, the AI will need to be transparent and accountable to an accident investigator, so the internal process that led to the accident can be understood. E. Workers must have the right to demand transparency in the decisions and outcomes of AI systems as well as the underlying algorithms (see principle 4 below). This includes the right to appeal decisions made by AI algorithms, and having it reviewed by a human being. F. Workers must be consulted on AI systems’ implementation, development and deployment. G. Following an accident, judges, juries, lawyers, and expert witnesses involved in the trial process require transparency and accountability to inform evidence and decision making. The principle of transparency is a prerequisite for ascertaining that the remaining principles are observed. See Principle 2 below for operational solution.

Published by UNI Global Union in Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017