3. New technology, including AI systems, must be transparent and explainable

For the public to trust AI, it must be transparent. Technology companies must be clear about who trains their AI systems, what data was used in that training and, most importantly, what went into their algorithm’s recommendations. If we are to use AI to help make important decisions, it must be explainable.
Principle: Principles for Trust and Transparency, May 30, 2018

Published by IBM

Related Principles

Transparency

As AI increasingly changes the nature of work, workers, customers and vendors need to have information about how AI systems operate so that they can understand how decisions are made. Their involvement will help to identify potential bias, errors and unintended outcomes. Transparency is not necessarily nor only a question of open source code. While in some circumstances open source code will be helpful, what is more important are clear, complete and testable explanations of what the system is doing and why. Intellectual property, and sometimes even cyber security, is rewarded by a lack of transparency. Innovation generally, including in algorithms, is a value that should be encouraged. How, then, are these competing values to be balanced? One possibility is to require algorithmic verifiability rather than full algorithmic disclosure. Algorithmic verifiability would require companies to disclose not the actual code driving the algorithm but information allowing the effect of their algorithms to be independently assessed. In the absence of transparency regarding their algorithms’ purpose and actual effect, it is impossible to ensure that competition, labour, workplace safety, privacy and liability laws are being upheld. When accidents occur, the AI and related data will need to be transparent and accountable to an accident investigator, so that the process that led to the accident can be understood.

Published by Centre for International Governance Innovation (CIGI), Canada in Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

Preamble

Two of Deutsche Telekom’s most important goals are to keep being a trusted companion and to enhance customer experience. We see it as our responsibility as one of the leading ICT companies in Europe to foster the development of “intelligent technologies”. At least either important, these technologies, such as AI, must follow predefined ethical rules. To define a corresponding ethical framework, firstly it needs a common understanding on what AI means. Today there are several definitions of AI, like the very first one of John McCarthy (1956) “Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.” In line with other companies and main players in the field of AI we at DT think of AI as the imitation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self correction. After several decades, Artificial Intelligence has become one of the most intriguing topics of today – and the future. It has become widespread available and is discussed not only among experts but also more and more in public, politics, etc.. AI has started to influence business (new market opportunities as well as efficiency driver), society (e.g. broad discussion about autonomously driving vehicles or AI as “job machine” vs. “job killer”) and the life of each individual (AI already found its way into the living room, e.g. with voice steered digital assistants like smart speakers). But the use of AI and its possibilities confront us not only with fast developing technologies but as well as with the fact that our ethical roadmaps, based on human human interactions, might not be sufficient in this new era of technological influence. New questions arise and situations that were not imaginable in our daily lives then emerge. We as DT also want to develop and make use of AI. This technology can bring many benefits based on improving customer experience or simplicity. We are already in the game, e.g having several AI related projects running. With these comes an increase of digital responsibility on our side to ensure that AI is utilized in an ethical manner. So we as DT have to give answers to our customers, shareholders and stakeholders. The following Digital Ethics guidelines state how we as Deutsche Telekom want to build the future with AI. For us, technology serves one main purpose: It must act supportingly. Thus AI is in any case supposed to extend and complement human abilities rather than lessen them. Remark: The impact of AI on DT jobs – may it as a benefit and for value creation in the sense of job enrichment and enlargement or may it in the sense of efficiency is however not focus of these guidelines.

Published by Deutsche Telekom in Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society in Guiding Principles and Recommendations, Apr 18, 2017

5 DEMOCRATIC PARTICIPATION PRINCIPLE

AIS must meet intelligibility, justifiability, and accessibility criteria, and must be subjected to democratic scrutiny, debate, and control. 1) AIS processes that make decisions affecting a person’s life, quality of life, or reputation must be intelligible to their creators. 2) The decisions made by AIS affecting a person’s life, quality of life, or reputation should always be justifiable in a language that is understood by the people who use them or who are subjected to the consequences of their use. Justification consists in making transparent the most important factors and parameters shaping the decision, and should take the same form as the justification we would demand of a human making the same kind of decision. 3) The code for algorithms, whether public or private, must always be accessible to the relevant public authorities and stakeholders for verification and control purposes. 4) The discovery of AIS operating errors, unexpected or undesirable effects, security breaches, and data leaks must imperatively be reported to the relevant public authorities, stakeholders, and those affected by the situation. 5) In accordance with the transparency requirement for public decisions, the code for decision making algorithms used by public authorities must be accessible to all, with the exception of algorithms that present a high risk of serious danger if misused. 6) For public AIS that have a significant impact on the life of citizens, citizens should have the opportunity and skills to deliberate on the social parameters of these AIS, their objectives, and the limits of their use. 7) We must at all times be able to verify that AIS are doing what they were programmed for and what they are used for. 8) Any person using a service should know if a decision concerning them or affecting them was made by an AIS. 9) Any user of a service employing chatbots should be able to easily identify whether they are interacting with an AIS or a real person. 10) Artificial intelligence research should remain open and accessible to all.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018

We will make AI systems transparent

1. Developers should build systems whose failures can be traced and diagnosed 2. People should be told when significant decisions about them are being made by AI 3. Within the limits of privacy and the preservation of intellectual property, those who deploy AI systems should be transparent about the data and algorithms they use

Published by Smart Dubai in Dubai's AI Principles, Jan 08, 2019