Public Empowerment

Principle: The public’s ability to understand AI enabled services, and how they work, is key to ensuring trust in the technology. Recommendations: “Algorithmic Literacy” must be a basic skill: Whether it is the curating of information in social media platforms or self driving cars, users need to be aware and have a basic understanding of the role of algorithms and autonomous decision making. Such skills will also be important in shaping societal norms around the use of the technology. For example, identifying decisions that may not be suitable to delegate to an AI. Provide the public with information: While full transparency around a service’s machine learning techniques and training data is generally not advisable due to the security risk, the public should be provided with enough information to make it possible for people to question its outcomes.
Principle: Guiding Principles and Recommendations, Apr 18, 2017

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper"

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· (2) Education

In a society premised on AI, we have to eliminate disparities, divisions, or socially weak people. Therefore, policy makers and managers of the enterprises involved in AI must have an accurate understanding of AI, the knowledge for proper use of AI in society and AI ethics, taking into account the complexity of AI and the possibility that AI can be misused intentionally. The AI user should understand the outline of AI and be educated to utilize it properly because AI is much more complicated than the already developed conventional tools. On the other hand, from the viewpoint of AI’s contributions to society, it is important for the developers of AI to learn about the social sciences, business models, and ethics, including normative awareness of norms and wide range of liberal arts not to mention the basis possibly generated by AI. From the above point of view, it is necessary to establish an educational environment that provides AI literacy according to the following principles, equally to every person. In order to get rid of disparity between people having a good knowledge about AI technology and those being weak in it, opportunities for education such as AI literacy are widely provided in early childhood education and primary and secondary education. The opportunities of learning about AI should be provided for the elderly people as well as workforce generation. Our society needs an education scheme by which anyone should be able to learn AI, mathematics, and data science beyond the boundaries of literature and science. Literacy education provides the following contents: 1) Data used by AI are usually contaminated by bias, 2) AI is easy to generate unwanted bias in its use, and 3) The issues of impartiality, fairness, and privacy protection which are inherent to actual use of AI. In a society in which AI is widely used, the educational environment is expected to change from the current unilateral and uniform teaching style to one that matches the interests and skill level of each individual person. Therefore, the society probably shares the view that the education system will change constantly to the above mentioned education style, regardless of the success experience in the educational system of the past. In education, it is especially important to avoid dropouts. For this, it is desirable to introduce an interactive educational environment which fully utilizes AI technologies and allows students to work together to feel a kind accomplishment. In order to develop such an educational environment, it is desirable that companies and citizens work on their own initiative, not to burden administrations and schools (teachers).

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI (Draft), Dec 27, 2018

IV. Transparency

The traceability of AI systems should be ensured; it is important to log and document both the decisions made by the systems, as well as the entire process (including a description of data gathering and labelling, and a description of the algorithm used) that yielded the decisions. Linked to this, explainability of the algorithmic decision making process, adapted to the persons involved, should be provided to the extent possible. Ongoing research to develop explainability mechanisms should be pursued. In addition, explanations of the degree to which an AI system influences and shapes the organisational decision making process, design choices of the system, as well as the rationale for deploying it, should be available (hence ensuring not just data and system transparency, but also business model transparency). Finally, it is important to adequately communicate the AI system’s capabilities and limitations to the different stakeholders involved in a manner appropriate to the use case at hand. Moreover, AI systems should be identifiable as such, ensuring that users know they are interacting with an AI system and which persons are responsible for it.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

5 DEMOCRATIC PARTICIPATION PRINCIPLE

AIS must meet intelligibility, justifiability, and accessibility criteria, and must be subjected to democratic scrutiny, debate, and control. 1) AIS processes that make decisions affecting a person’s life, quality of life, or reputation must be intelligible to their creators. 2) The decisions made by AIS affecting a person’s life, quality of life, or reputation should always be justifiable in a language that is understood by the people who use them or who are subjected to the consequences of their use. Justification consists in making transparent the most important factors and parameters shaping the decision, and should take the same form as the justification we would demand of a human making the same kind of decision. 3) The code for algorithms, whether public or private, must always be accessible to the relevant public authorities and stakeholders for verification and control purposes. 4) The discovery of AIS operating errors, unexpected or undesirable effects, security breaches, and data leaks must imperatively be reported to the relevant public authorities, stakeholders, and those affected by the situation. 5) In accordance with the transparency requirement for public decisions, the code for decision making algorithms used by public authorities must be accessible to all, with the exception of algorithms that present a high risk of serious danger if misused. 6) For public AIS that have a significant impact on the life of citizens, citizens should have the opportunity and skills to deliberate on the social parameters of these AIS, their objectives, and the limits of their use. 7) We must at all times be able to verify that AIS are doing what they were programmed for and what they are used for. 8) Any person using a service should know if a decision concerning them or affecting them was made by an AIS. 9) Any user of a service employing chatbots should be able to easily identify whether they are interacting with an AIS or a real person. 10) Artificial intelligence research should remain open and accessible to all.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018