11. Robustness and Security

AI systems should be safe and secure, not vulnerable to tampering or compromising the data they are trained on.
Principle: A compilation of existing AI ethical principles (Annex A), Jan 21, 2020

Published by Personal Data Protection Commission (PDPC), Singapore

Related Principles

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

III. Privacy and Data Governance

Privacy and data protection must be guaranteed at all stages of the AI system’s life cycle. Digital records of human behaviour may allow AI systems to infer not only individuals’ preferences, age and gender but also their sexual orientation, religious or political views. To allow individuals to trust the data processing, it must be ensured that they have full control over their own data, and that data concerning them will not be used to harm or discriminate against them. In addition to safeguarding privacy and personal data, requirements must be fulfilled to ensure high quality AI systems. The quality of the data sets used is paramount to the performance of AI systems. When data is gathered, it may reflect socially constructed biases, or contain inaccuracies, errors and mistakes. This needs to be addressed prior to training an AI system with any given data set. In addition, the integrity of the data must be ensured. Processes and data sets used must be tested and documented at each step such as planning, training, testing and deployment. This should also apply to AI systems that were not developed in house but acquired elsewhere. Finally, the access to data must be adequately governed and controlled.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

(g) Security, safety, bodily and mental integrity

Safety and security of ‘autonomous’ systems materialises in three forms: (1) external safety for their environment and users, (2) reliability and internal robustness, e.g. against hacking, and (3) emotional safety with respect to human machine interaction. All dimensions of safety must be taken into account by AI developers and strictly tested before release in order to ensure that ‘autonomous’ systems do not infringe on the human right to bodily and mental integrity and a safe and secure environment. Special attention should hereby be paid to persons who find themselves in a vulnerable position. Special attention should also be paid to potential dual use and weaponisation of AI, e.g. in cybersecurity, finance, infrastructure and armed conflict.

Published by European Group on Ethics in Science and New Technologies, European Commission in Ethical principles and democratic prerequisites, Mar 9, 2018

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

· AI systems will be safe, secure and controllable by humans

1. Safety and security of the people, be they operators, end users or other parties, will be of paramount concern in the design of any AI system 2. AI systems should be verifiably secure and controllable throughout their operational lifetime, to the extent permitted by technology 3. The continued security and privacy of users should be considered when decommissioning AI systems 4. AI systems that may directly impact people’s lives in a significant way should receive commensurate care in their designs, and; 5. Such systems should be able to be overridden or their decisions reversed by designated people

Published by Smart Dubai in Dubai's AI Principles, Jan 08, 2019