6. Transparent regulation

The development of artificial intelligence should avoid the security risks caused by the technology black box, and it is necessary to ensure the unity of target functions and technologies through the establishment of reviewable, traceable, reputable regulatory mechanisms.
Principle: Shanghai Initiative for the Safe Development of Artificial Intelligence, Aug 30, 2019

Published by Shanghai Advisory Committee of Experts on Artificial Intelligence Industry Security

Related Principles

· 5. The Principle of Explicability: “Operate transparently”

Transparency is key to building and maintaining citizen’s trust in the developers of AI systems and AI systems themselves. Both technological and business model transparency matter from an ethical standpoint. Technological transparency implies that AI systems be auditable, comprehensible and intelligible by human beings at varying levels of comprehension and expertise. Business model transparency means that human beings are knowingly informed of the intention of developers and technology implementers of AI systems. Explicability is a precondition for achieving informed consent from individuals interacting with AI systems and in order to ensure that the principle of explicability and non maleficence are achieved the requirement of informed consent should be sought. Explicability also requires accountability measures be put in place. Individuals and groups may request evidence of the baseline parameters and instructions given as inputs for AI decision making (the discovery or prediction sought by an AI system or the factors involved in the discovery or prediction made) by the organisations and developers of an AI system, the technology implementers, or another party in the supply chain.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· 9. Safety

Safety is about ensuring that the system will indeed do what it is supposed to do, without harming users (human physical integrity), resources or the environment. It includes minimizing unintended consequences and errors in the operation of the system. Processes to clarify and assess potential risks associated with the use of AI products and services should be put in place. Moreover, formal mechanisms are needed to measure and guide the adaptability of AI systems.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

5. Principle of security

Developers should pay attention to the security of AI systems. [Comment] In addition to respecting international guidelines on security such as “OECD Guidelines for the Security of Information Systems and Networks,” it is encouraged that developers pay attention to the followings, with consideration of the possibility that AI systems might change their outputs or programs as a result of learning or other methods: ● To pay attention, as necessary, to the reliability (that is, whether the operations are performed as intended and not steered by unauthorized third parties) and robustness (that is, tolerance to physical attacks and accidents) of AI systems, in addition to: (a) confidentiality; (b) integrity; and (c) availability of information that are usually required for ensuring the information security of AI systems. ● To make efforts to conduct verification and validation in advance in order to assess and control the risks related to the security of AI systems. ● To make efforts to take measures to maintain the security to the extent possible in light of the characteristics of the technologies to be adopted throughout the process of the development of AI systems (“security by design”).

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in AI R&D Principles, Jul 28, 2017

8. Open cooperation

The development of artificial intelligence requires the concerted efforts of all countries and all parties, and we should actively establish norms and standards for the safe development of artificial intelligence at the international level, so as to avoid the security risks caused by incompatibility between technology and policies.

Published by Shanghai Advisory Committee of Experts on Artificial Intelligence Industry Security in Shanghai Initiative for the Safe Development of Artificial Intelligence, Aug 30, 2019

3. Scientific Integrity and Information Quality

The government’s regulatory and non regulatory approaches to AI applications should leverage scientific and technical information and processes. Agencies should hold information, whether produced by the government or acquired by the government from third parties, that is likely to have a clear and substantial influence on important public policy or private sector decisions (including those made by consumers) to a high standard of quality, transparency, and compliance. Consistent with the principles of scientific integrity in the rulemaking and guidance processes, agencies should develop regulatory approaches to AI in a manner that both informs policy decisions and fosters public trust in AI. Best practices include transparently articulating the strengths, weaknesses, intended optimizations or outcomes, bias mitigation, and appropriate uses of the AI application’s results. Agencies should also be mindful that, for AI applications to produce predictable, reliable, and optimized outcomes, data used to train the AI system must be of sufficient quality for the intended use.

Published by The White House Office of Science and Technology Policy (OSTP), United States in Principles for the Stewardship of AI Applications, Jan 13, 2020