Related Principles
II. Technical robustness and safety
Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible.
In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.
III. Privacy and Data Governance
Privacy and data protection must be guaranteed at all stages of the AI system’s life cycle. Digital records of human behaviour may allow AI systems to infer not only individuals’ preferences, age and gender but also their sexual orientation, religious or political views. To allow individuals to trust the data processing, it must be ensured that they have full control over their own data, and that data concerning them will not be used to harm or discriminate against them.
In addition to safeguarding privacy and personal data, requirements must be fulfilled to ensure high quality AI systems. The quality of the data sets used is paramount to the performance of AI systems. When data is gathered, it may reflect socially constructed biases, or contain inaccuracies, errors and mistakes. This needs to be addressed prior to training an AI system with any given data set. In addition, the integrity of the data must be ensured. Processes and data sets used must be tested and documented at each step such as planning, training, testing and deployment. This should also apply to AI systems that were not developed in house but acquired elsewhere. Finally, the access to data must be adequately governed and controlled.
10. Transparency
Published by: The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI
Transparency concerns the reduction of information asymmetry. Explainability – as a form of transparency – entails the capability to describe, inspect and reproduce the mechanisms through which AI systems make decisions and learn to adapt to their environments, as well as the provenance and dynamics of the data that is used and created by the system. Being explicit and open about choices and decisions concerning data sources, development processes, and stakeholders should be required from all models that use human data or affect human beings or can have other morally significant impact.
2. Transparency
For cognitive systems to fulfill their world changing potential, it is vital that people have confidence in their recommendations, judgments and uses. Therefore, the IBM company will make clear:
When and for what purposes AI is being applied in the cognitive solutions we develop and deploy.
The major sources of data and expertise that inform the insights of cognitive solutions, as well as the methods used to train those systems and solutions.
The principle that clients own their own business models and intellectual property and that they can use AI and cognitive systems to enhance the advantages they have built, often through years of experience. We will work with our clients to protect their data and insights, and will encourage our clients, partners and industry colleagues to adopt similar practices.
4. Principle 4 — Transparency
Issue: How can we ensure that A IS are transparent?
[Candidate Recommendation]
Develop new standards* that describe measurable, testable levels of transparency, so that systems can be objectively assessed and levels of compliance determined. For designers, such standards will provide a guide for self assessing transparency during development and suggest mechanisms for improving transparency. (The mechanisms by which transparency is provided will vary significantly, for instance 1) for users of care or domestic robots, a why did you do that button which, when pressed, causes the robot to explain the action it just took, 2) for validation or certification agencies, the algorithms underlying the A IS and how they have been verified, and 3) for accident investigators, secure storage of sensor and internal state data, comparable to a flight data recorder or black box.)
*Note that IEEE Standards Working Group P7001™ has been set up in response to this recommendation.