· Fairness and inclusion

AI systems should make the same recommendations for everyone with similar characteristics or qualifications. Employers should be required to test AI in the workplace on a regular basis to ensure that the system is built for purpose and is not harmfully influenced by bias of any kind — gender, race, sexual orientation, age, religion, income, family status and so on. AI should adopt inclusive design efforts to anticipate any potential deployment issues that could unintentionally exclude people. Workplace AI should be tested to ensure that it does not discriminate against vulnerable individuals or communities. Governments should review the impact of workplace, governmental and social AI on the opportunities and rights of poor people, Indigenous peoples and vulnerable members of society. In particular, the impact of overlapping AI systems toward profiling and marginalization should be identified and countered.
Principle: Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

Published by Centre for International Governance Innovation (CIGI), Canada

Related Principles

Fairness

Throughout their lifecycle, AI systems should be inclusive and accessible, and should not involve or result in unfair discrimination against individuals, communities or groups. This principle aims to ensure that AI systems are fair and that they enable inclusion throughout their entire lifecycle. AI systems should be user centric and designed in a way that allows all people interacting with it to access the related products or services. This includes both appropriate consultation with stakeholders, who may be affected by the AI system throughout its lifecycle, and ensuring people receive equitable access and treatment. This is particularly important given concerns about the potential for AI to perpetuate societal injustices and have a disparate impact on vulnerable and underrepresented groups including, but not limited to, groups relating to age, disability, race, sex, intersex status, gender identity and sexual orientation. Measures should be taken to ensure the AI produced decisions are compliant with anti‐discrimination laws.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

Contestability

When an AI system significantly impacts a person, community, group or environment, there should be a timely process to allow people to challenge the use or output of the AI system. This principle aims to ensure the provision of efficient, accessible mechanisms that allow people to challenge the use or output of an AI system, when that AI system significantly impacts a person, community, group or environment. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Knowing that redress for harm is possible, when things go wrong, is key to ensuring public trust in AI. Particular attention should be paid to vulnerable persons or groups. There should be sufficient access to the information available to the algorithm, and inferences drawn, to make contestability effective. In the case of decisions significantly affecting rights, there should be an effective system of oversight, which makes appropriate use of human judgment.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· 2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· 4. The Principle of Justice: “Be Fair”

For the purposes of these Guidelines, the principle of justice imparts that the development, use, and regulation of AI systems must be fair. Developers and implementers need to ensure that individuals and minority groups maintain freedom from bias, stigmatisation and discrimination. Additionally, the positives and negatives resulting from AI should be evenly distributed, avoiding to place vulnerable demographics in a position of greater vulnerability and striving for equal opportunity in terms of access to education, goods, services and technology amongst human beings, without discrimination. Justice also means that AI systems must provide users with effective redress if harm occurs, or effective remedy if data practices are no longer aligned with human beings’ individual or collective preferences. Lastly, the principle of justice also commands those developing or implementing AI to be held to high standards of accountability. Humans might benefit from procedures enabling the benchmarking of AI performance with (ethical) expectations.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

8. Principle of fairness

AI service providers, business users, and data providers should take into consideration that individuals will not be discriminated unfairly by the judgments of AI systems or AI services. [Main points to discuss] A) Attention to the representativeness of data used for learning or other methods of AI AI service providers, business users, and data providers may be expected to pay attention to the representativeness of data used for learning or other methods of AI and the social bias inherent in the data so that individuals should not be unfairly discriminated against due to their race, religion, gender, etc. as a result of the judgment of AI. In light of the characteristics of the technologies to be used and their usage, in what cases and to what extent is attention expected to be paid to the representativeness of data used for learning or other methods and the social bias inherent in the data? Note: The representativeness of data refers to the fact that data sampled and used do not distort the propensity of the population of data. B) Attention to unfair discrimination by algorithm AI service providers and business users may be expected to pay attention to the possibility that individuals may be unfairly discriminated against due to their race, religion, gender, etc. by the algorithm of AI. C) Human intervention Regarding the judgment made by AI, AI service providers and business users may be expected to make judgments as to whether to use the judgments of AI, how to use it, or other matters, with consideration of social contexts and reasonable expectations of people in the utilization of AI, so that individuals should not be unfairly discriminated against due to their race, religion, gender, etc. In light of the characteristics of the technologies to be used and their usage, in what cases and to what extent is human intervention expected?

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in Draft AI Utilization Principles, Jul 17, 2018