2. Equip AI Systems With an “Ethical Black Box”

Full transparency in an AI system should be facilitated by the presence of a device that can record information about said system in the form of an “ethical black box” that not only contains relevant data to ensure transparency and accountability of a system, but also includes clear data and information on the ethical considerations built into said system. Applied to robots, the ethical black box would record all decisions, its bases for decision making, movements, and sensory data for its robot host. The data provided by the black box could also assist robots in explaining their actions in language human users can understand, fostering better relationships and improving the user experience. The read out of the ethical black box should be uncomplicated and fast.
Principle: Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017

Published by UNI Global Union

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

IV. Transparency

The traceability of AI systems should be ensured; it is important to log and document both the decisions made by the systems, as well as the entire process (including a description of data gathering and labelling, and a description of the algorithm used) that yielded the decisions. Linked to this, explainability of the algorithmic decision making process, adapted to the persons involved, should be provided to the extent possible. Ongoing research to develop explainability mechanisms should be pursued. In addition, explanations of the degree to which an AI system influences and shapes the organisational decision making process, design choices of the system, as well as the rationale for deploying it, should be available (hence ensuring not just data and system transparency, but also business model transparency). Finally, it is important to adequately communicate the AI system’s capabilities and limitations to the different stakeholders involved in a manner appropriate to the use case at hand. Moreover, AI systems should be identifiable as such, ensuring that users know they are interacting with an AI system and which persons are responsible for it.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

(h) Data protection and privacy

In an age of ubiquitous and massive collection of data through digital communication technologies, the right to protection of personal information and the right to respect for privacy are crucially challenged. Both physical AI robots as part of the Internet of Things, as well as AI softbots that operate via the World Wide Web must comply with data protection regulations and not collect and spread data or be run on sets of data for whose use and dissemination no informed consent has been given. ‘Autonomous’ systems must not interfere with the right to private life which comprises the right to be free from technologies that influence personal development and opinions, the right to establish and develop relationships with other human beings, and the right to be free from surveillance. Also in this regard, exact criteria should be defined and mechanisms established that ensure ethical development and ethically correct application of ‘autonomous’ systems. In light of concerns with regard to the implications of ‘autonomous’ systems on private life and privacy, consideration may be given to the ongoing debate about the introduction of two new rights: the right to meaningful human contact and the right to not be profiled, measured, analysed, coached or nudged.

Published by European Group on Ethics in Science and New Technologies, European Commission in Ethical principles and democratic prerequisites, Mar 9, 2018

· 2. Data Governance

The quality of the data sets used is paramount for the performance of the trained machine learning solutions. Even if the data is handled in a privacy preserving way, there are requirements that have to be fulfilled in order to have high quality AI. The datasets gathered inevitably contain biases, and one has to be able to prune these away before engaging in training. This may also be done in the training itself by requiring a symmetric behaviour over known issues in the training set. In addition, it must be ensured that the proper division of the data which is being set into training, as well as validation and testing of those sets, is carefully conducted in order to achieve a realistic picture of the performance of the AI system. It must particularly be ensured that anonymisation of the data is done in a way that enables the division of the data into sets to make sure that a certain data – for instance, images from same persons – do not end up into both the training and test sets, as this would disqualify the latter. The integrity of the data gathering has to be ensured. Feeding malicious data into the system may change the behaviour of the AI solutions. This is especially important for self learning systems. It is therefore advisable to always keep record of the data that is fed to the AI systems. When data is gathered from human behaviour, it may contain misjudgement, errors and mistakes. In large enough data sets these will be diluted since correct actions usually overrun the errors, yet a trace of thereof remains in the data. To trust the data gathering process, it must be ensured that such data will not be used against the individuals who provided the data. Instead, the findings of bias should be used to look forward and lead to better processes and instructions – improving our decisions making and strengthening our institutions.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· 8. Robustness

Trustworthy AI requires that algorithms are secure, reliable as well as robust enough to deal with errors or inconsistencies during the design, development, execution, deployment and use phase of the AI system, and to adequately cope with erroneous outcomes. Reliability & Reproducibility. Trustworthiness requires that the accuracy of results can be confirmed and reproduced by independent evaluation. However, the complexity, non determinism and opacity of many AI systems, together with sensitivity to training model building conditions, can make it difficult to reproduce results. Currently there is an increased awareness within the AI research community that reproducibility is a critical requirement in the field. Reproducibility is essential to guarantee that results are consistent across different situations, computational frameworks and input data. The lack of reproducibility can lead to unintended discrimination in AI decisions. Accuracy. Accuracy pertains to an AI’s confidence and ability to correctly classify information into the correct categories, or its ability to make correct predictions, recommendations, or decisions based on data or models. An explicit and well formed development and evaluation process can support, mitigate and correct unintended risks. Resilience to Attack. AI systems, like all software systems, can include vulnerabilities that can allow them to be exploited by adversaries. Hacking is an important case of intentional harm, by which the system will purposefully follow a different course of action than its original purpose. If an AI system is attacked, the data as well as system behaviour can be changed, leading the system to make different decisions, or causing the system to shut down altogether. Systems and or data can also become corrupted, by malicious intention or by exposure to unexpected situations. Poor governance, by which it becomes possible to intentionally or unintentionally tamper with the data, or grant access to the algorithms to unauthorised entities, can also result in discrimination, erroneous decisions, or even physical harm. Fall back plan. A secure AI has safeguards that enable a fall back plan in case of problems with the AI system. In some cases this can mean that the AI system switches from statistical to rule based procedure, in other cases it means that the system asks for a human operator before continuing the action.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018