Article 5: Secure safe and controllable.

Ensure that AI systems operate securely safely, reliably, and controllably throughout their lifecycle. Evaluate system security safety and potential risks, and continuously improve system maturity, robustness, and anti tampering capabilities. Ensure that the system can be supervised and promptly taken over by humans to avoid the negative effects of loss of system control.
Principle: Joint Pledge on Artificial Intelligence Industry Self-Discipline (Draft for Comment), May 31, 2019

Published by Artificial Intelligence Industry Alliance (AIIA), China

Related Principles

Reliability and safety

Throughout their lifecycle, AI systems should reliably operate in accordance with their intended purpose. This principle aims to ensure that AI systems reliably operate in accordance with their intended purpose throughout their lifecycle. This includes ensuring AI systems are reliable, accurate and reproducible as appropriate. AI systems should not pose unreasonable safety risks, and should adopt safety measures that are proportionate to the magnitude of potential risks. AI systems should be monitored and tested to ensure they continue to meet their intended purpose, and any identified problems should be addressed with ongoing risk management as appropriate. Responsibility should be clearly and appropriately identified, for ensuring that an AI system is robust and safe.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

1.4. Robustness, security and safety

a) AI systems should be robust, secure and safe throughout their entire lifecycle so that, in conditions of normal use, foreseeable use or misuse, or other adverse conditions, they function appropriately and do not pose unreasonable safety risk. b) To this end, AI actors should ensure traceability, including in relation to datasets, processes and decisions made during the AI system lifecycle, to enable analysis of the AI system’s outcomes and responses to inquiry, appropriate to the context and consistent with the state of art. c) AI actors should, based on their roles, the context, and their ability to act, apply a systematic risk management approach to each phase of the AI system lifecycle on a continuous basis to address risks related to AI systems, including privacy, digital security, safety and bias.

Published by G20 Ministerial Meeting on Trade and Digital Economy in G20 AI Principles, Jun 09, 2019

1.2 Safety and Controllability

Technologists have a responsibility to ensure the safe design of AI systems. Autonomous AI agents must treat the safety of users and third parties as a paramount concern, and AI technologies should strive to reduce risks to humans. Furthermore, the development of autonomous AI systems must have safeguards to ensure controllability of the AI system by humans, tailored to the specific context in which a particular system operates.

Published by Information Technology Industry Council (ITI) in AI Policy Principles, Oct 24, 2017

1.4. Robustness, security and safety

a) AI systems should be robust, secure and safe throughout their entire lifecycle so that, in conditions of normal use, foreseeable use or misuse, or other adverse conditions, they function appropriately and do not pose unreasonable safety risk. b) To this end, AI actors should ensure traceability, including in relation to datasets, processes and decisions made during the AI system lifecycle, to enable analysis of the AI system’s outcomes and responses to inquiry, appropriate to the context and consistent with the state of art. c) AI actors should, based on their roles, the context, and their ability to act, apply a systematic risk management approach to each phase of the AI system lifecycle on a continuous basis to address risks related to AI systems, including privacy, digital security, safety and bias.

Published by The Organisation for Economic Co-operation and Development (OECD) in OECD Principles on Artificial Intelligence, May 22, 2019