Article 6: Transparent and explainable.

Continuously improve the transparency of artificial intelligence systems. Regarding system decision making processes, data structures, and the intent of system developers and technological implementers: be capable of accurate description, monitoring, and reproduction; and realize explainability, predictability, traceability, and verifiability for algorithmic logic, system decisions, and action outcomes.
Principle: Joint Pledge on Artificial Intelligence Industry Self-Discipline (Draft for Comment), May 31, 2019

Published by Artificial Intelligence Industry Alliance (AIIA), China

Related Principles

5. The Principle of Explicability: “Operate transparently”

Transparency is key to building and maintaining citizen’s trust in the developers of AI systems and AI systems themselves. Both technological and business model transparency matter from an ethical standpoint. Technological transparency implies that AI systems be auditable, comprehensible and intelligible by human beings at varying levels of comprehension and expertise. Business model transparency means that human beings are knowingly informed of the intention of developers and technology implementers of AI systems. Explicability is a precondition for achieving informed consent from individuals interacting with AI systems and in order to ensure that the principle of explicability and non maleficence are achieved the requirement of informed consent should be sought. Explicability also requires accountability measures be put in place. Individuals and groups may request evidence of the baseline parameters and instructions given as inputs for AI decision making (the discovery or prediction sought by an AI system or the factors involved in the discovery or prediction made) by the organisations and developers of an AI system, the technology implementers, or another party in the supply chain.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

3. Artificial intelligence systems transparency and intelligibility should be improved, with the objective of effective implementation, in particular by:

a. investing in public and private scientific research on explainable artificial intelligence, b. promoting transparency, intelligibility and reachability, for instance through the development of innovative ways of communication, taking into account the different levels of transparency and information required for each relevant audience, c. making organizations’ practices more transparent, notably by promoting algorithmic transparency and the auditability of systems, while ensuring meaningfulness of the information provided, and d. guaranteeing the right to informational self determination, notably by ensuring that individuals are always informed appropriately when they are interacting directly with an artificial intelligence system or when they provide personal data to be processed by such systems, e. providing adequate information on the purpose and effects of artificial intelligence systems in order to verify continuous alignment with expectation of individuals and to enable overall human control on such systems.

Published by 40th International Conference of Data Protection and Privacy Commissioners (ICDPPC) in Declaration On Ethics And Data Protection In Artifical Intelligence, Oct 23, 2018

10. Responsibility, accountability and transparency

a. Build trust by ensuring that designers and operators are responsible and accountable for their systems, applications and algorithms, and to ensure that such systems, applications and algorithms operate in a transparent and fair manner. b. To make available externally visible and impartial avenues of redress for adverse individual or societal effects of an algorithmic decision system, and to designate a role to a person or office who is responsible for the timely remedy of such issues. c. Incorporate downstream measures and processes for users or stakeholders to verify how and when AI technology is being applied. d. To keep detailed records of design processes and decision making.

Published by Personal Data Protection Commission (PDPC), Singapore in A compilation of existing AI ethical principles (Annex A), Jan 21, 2020

1) Accountability:

Artificial intelligence should be auditable and traceable. We are committed to confirming test standards, deployment processes and specifications, ensuring algorithms verifiable, and gradually improving the accountability and supervision mechanism of artificial intelligence systems.

Published by Chinese Young Scientists in Chinese Young Scientists’ Declaration on the Governance and Innovation of Artificial Intelligence, Aug 29, 2019

3. Scientific Integrity and Information Quality

The government’s regulatory and non regulatory approaches to AI applications should leverage scientific and technical information and processes. Agencies should hold information, whether produced by the government or acquired by the government from third parties, that is likely to have a clear and substantial influence on important public policy or private sector decisions (including those made by consumers) to a high standard of quality, transparency, and compliance. Consistent with the principles of scientific integrity in the rulemaking and guidance processes, agencies should develop regulatory approaches to AI in a manner that both informs policy decisions and fosters public trust in AI. Best practices include transparently articulating the strengths, weaknesses, intended optimizations or outcomes, bias mitigation, and appropriate uses of the AI application’s results. Agencies should also be mindful that, for AI applications to produce predictable, reliable, and optimized outcomes, data used to train the AI system must be of sufficient quality for the intended use.

Published by The White House Office of Science and Technology Policy (OSTP), United States in Principles for the Stewardship of AI Applications, Jan 13, 2020