7. Accountability and Social Responsibility

Members of the JSAI must verify the performance and resulting impact of AI technologies they have researched and developed. In the event that potential danger is identified, a warning must be effectively communicated to all of society. Members of the JSAI will understand that their research and development can be used against their knowledge for the purposes of harming others, and will put in efforts to prevent such misuse. If misuse of AI is discovered and reported, there shall be no loss suffered by those who discover and report the misuse.
Principle: The Japanese Society for Artificial Intelligence Ethical Guidelines, Feb 28, 2017

Published by The Japanese Society for Artificial Intelligence (JSAI)

Related Principles

2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society in Guiding Principles and Recommendations, Apr 18, 2017

6. Act with integrity

Members of the JSAI are to acknowledge the significant impact which AI can have on society. They will therefore act with integrity and in a way that can be trusted by society. As specialists, members of the JSAI will not assert false or unclear claims and are obliged to explain the technical limitations or problems in AI systems truthfully and in a scientifically sound manner.

Published by The Japanese Society for Artificial Intelligence (JSAI) in The Japanese Society for Artificial Intelligence Ethical Guidelines, Feb 28, 2017

5 DEMOCRATIC PARTICIPATION PRINCIPLE

AIS must meet intelligibility, justifiability, and accessibility criteria, and must be subjected to democratic scrutiny, debate, and control. 1) AIS processes that make decisions affecting a person’s life, quality of life, or reputation must be intelligible to their creators. 2) The decisions made by AIS affecting a person’s life, quality of life, or reputation should always be justifiable in a language that is understood by the people who use them or who are subjected to the consequences of their use. Justification consists in making transparent the most important factors and parameters shaping the decision, and should take the same form as the justification we would demand of a human making the same kind of decision. 3) The code for algorithms, whether public or private, must always be accessible to the relevant public authorities and stakeholders for verification and control purposes. 4) The discovery of AIS operating errors, unexpected or undesirable effects, security breaches, and data leaks must imperatively be reported to the relevant public authorities, stakeholders, and those affected by the situation. 5) In accordance with the transparency requirement for public decisions, the code for decision making algorithms used by public authorities must be accessible to all, with the exception of algorithms that present a high risk of serious danger if misused. 6) For public AIS that have a significant impact on the life of citizens, citizens should have the opportunity and skills to deliberate on the social parameters of these AIS, their objectives, and the limits of their use. 7) We must at all times be able to verify that AIS are doing what they were programmed for and what they are used for. 8) Any person using a service should know if a decision concerning them or affecting them was made by an AIS. 9) Any user of a service employing chatbots should be able to easily identify whether they are interacting with an AIS or a real person. 10) Artificial intelligence research should remain open and accessible to all.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018

8 PRUDENCE PRINCIPLE

Every person involved in AI development must exercise caution by anticipating, as far as possible, the adverse consequences of AIS use and by taking the appropriate measures to avoid them. 1) It is necessary to develop mechanisms that consider the potential for the double use — beneficial and harmful —of AI research and AIS development (whether public or private) in order to limit harmful uses. 2) When the misuse of an AIS endangers public health or safety and has a high probability of occurrence, it is prudent to restrict open access and public dissemination to its algorithm. 3) Before being placed on the market and whether they are offered for charge or for free, AIS must meet strict reliability, security, and integrity requirements and be subjected to tests that do not put people’s lives in danger, harm their quality of life, or negatively impact their reputation or psychological integrity. These tests must be open to the relevant public authorities and stakeholders. 4) The development of AIS must preempt the risks of user data misuse and protect the integrity and confidentiality of personal data. 5) The errors and flaws discovered in AIS and SAAD should be publicly shared, on a global scale, by public institutions and businesses in sectors that pose a significant danger to personal integrity and social organization.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018