3. Principle of controllability

Developers should pay attention to the controllability of AI systems. [Comment] In order to assess the risks related to the controllability of AI systems, it is encouraged that developers make efforts to conduct verification and validation in advance. One of the conceivable methods of risk assessment is to conduct experiments in a closed space such as in a laboratory or a sandbox in which security is ensured, at a stage before the practical application in society. In addition, in order to ensure the controllability of AI systems, it is encouraged that developers pay attention to whether the supervision (such as monitoring or warnings) and countermeasures (such as system shutdown, cut off from networks, or repairs) by humans or other trustworthy AI systems are effective, to the extent possible in light of the characteristics of the technologies to be adopted. [Note] Verification and validation are methods for evaluating and controlling risks in advance. Generally, the former is used for confirming formal consistency, while the latter is used for confirming substantial validity. (See, e.g., The Future of Life Institute (FLI), Research Priorities for Robust and Beneficial Artificial Intelligence (2015)). [Note] Examples of what to see in the risk assessment are risks of reward hacking in which AI systems formally achieve the goals assigned but substantially do not meet the developer's intents, and risks that AI systems work in ways that the developers have not intended due to the changes of their outputs and programs in the process of the utilization with their learning, etc. For reward hacking, see, e.g., Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman & Dan Mané, Concrete Problems in AI Safety, arXiv: 1606.06565 [cs.AI] (2016).
Principle: AI R&D Principles, Jul 28, 2017

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

4. Principle of safety

Developers should take it into consideration that AI systems will not harm the life, body, or property of users or third parties through actuators or other devices. [Comment] AI systems which are supposed to be subject to this principle are such ones that might harm the life, body, or property of users or third parties through actuators or other devices. It is encouraged that developers refer to relevant international standards and pay attention to the followings, with particular consideration of the possibility that outputs or programs might change as a result of learning or other methods of AI systems: ● To make efforts to conduct verification and validation in advance in order to assess and mitigate the risks related to the safety of the AI systems. ● To make efforts to implement measures, throughout the development stage of AI systems to the extent possible in light of the characteristics of the technologies to be adopted, to contribute to the intrinsic safety (reduction of essential risk factors such as kinetic energy of actuators) and the functional safety (mitigation of risks by operation of additional control devices such as automatic braking) when AI systems work with actuators or other devices. And ● To make efforts to explain the designers’ intent of AI systems and the reasons for it to stakeholders such as users, when developing AI systems to be used for making judgments regarding the safety of life, body, or property of users and third parties (for example, such judgments that prioritizes life, body, property to be protected at the time of an accident of a robot equipped with AI).

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in AI R&D Principles, Jul 28, 2017

5. Principle of security

Developers should pay attention to the security of AI systems. [Comment] In addition to respecting international guidelines on security such as “OECD Guidelines for the Security of Information Systems and Networks,” it is encouraged that developers pay attention to the followings, with consideration of the possibility that AI systems might change their outputs or programs as a result of learning or other methods: ● To pay attention, as necessary, to the reliability (that is, whether the operations are performed as intended and not steered by unauthorized third parties) and robustness (that is, tolerance to physical attacks and accidents) of AI systems, in addition to: (a) confidentiality; (b) integrity; and (c) availability of information that are usually required for ensuring the information security of AI systems. ● To make efforts to conduct verification and validation in advance in order to assess and control the risks related to the security of AI systems. ● To make efforts to take measures to maintain the security to the extent possible in light of the characteristics of the technologies to be adopted throughout the process of the development of AI systems (“security by design”).

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in AI R&D Principles, Jul 28, 2017

1. Principle of proper utilization

Users should make efforts to utilize AI systems or AI services in a proper scope and manner, under the proper assignment of roles between humans and AI systems, or among users. [Main points to discuss] A) Utilization in the proper scope and manner On the basis of the provision of information and explanation from developers, etc. and with consideration of social contexts and circumstances, users may be expected to use AI in the proper scope and manner. In addition, users may be expected to recognize benefits and risks, understand proper uses, acquire necessary knowledge and skills and so on before using AI, according to the characteristics, usage situations, etc. of AI. Furthermore, users may be expected to check regularly whether they use AI in an appropriate scope and manner. B) Proper balance of benefits and risks of AI AI service providers and business users may be expected to take into consideration proper balance between benefits and risks of AI, including the consideration of the active use of AI for productivity and work efficiency improvements, after appropriately assessing risks of AI. C) Updates of AI software and inspections repairs, etc. of AI Through the process of utilization, users may be expected to make efforts to update AI software and perform inspections, repairs, etc. of AI in order to improve the function of AI and to mitigate risks. D) Human Intervention Regarding the judgment made by AI, in cases where it is necessary and possible (e.g., medical care using AI), humans may be expected to make decisions as to whether to use the judgments of AI, how to use it etc. In those cases, what can be considered as criteria for the necessity of human intervention? In the utilization of AI that operates through actuators, etc., in the case where it is planned to shift to human operation under certain conditions, what kind of matters are expected to be paid attention to? [Points of view as criteria (example)] • The nature of the rights and interests of indirect users, et al., and their intents, affected by the judgments of AI. • The degree of reliability of the judgment of AI (compared with reliability of human judgment). • Allowable time necessary for human judgment • Ability expected to be possessed by users E) Role assignments among users With consideration of the volume of capabilities and knowledge on AI that each user is expected to have and ease of implementing necessary measures, users may be expected to play such roles as seems to be appropriate and also to bear the responsibility. F) Cooperation among stakeholders Users and data providers may be expected to cooperate with stakeholders and to work on preventive or remedial measures (including information sharing, stopping and restoration of AI, elucidation of causes, measures to prevent recurrence, etc.) in accordance with the nature, conditions, etc. of damages caused by accidents, security breaches, privacy infringement, etc. that may occur in the future or have occurred through the use of AI. What is expected reasonable from a users point of view to ensure the above effectiveness?

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in Draft AI Utilization Principles, Jul 17, 2018

9. Principle of transparency

AI service providers and business users should pay attention to the verifiability of inputs outputs of AI systems or AI services and the explainability of their judgments. Note: This principle is not intended to ask for the disclosure of algorithm, source code, or learning data. In interpreting this principle, privacy of individuals and trade secrets of enterprises are also taken into account. [Main points to discuss] A) Recording and preserving the inputs outputs of AI In order to ensure the verifiability of the input and output of AI, AI service providers and business users may be expected to record and preserve the inputs and outputs. In light of the characteristics of the technologies to be used and their usage, in what cases and to what extent are the inputs and outputs expected to be recorded and preserved? For example, in the case of using AI in fields where AI systems might harm the life, body, or property, such as the field of autonomous driving, the inputs and outputs of AI may be expected to be recorded and preserved to the extent whch is necessary for investigating the causes of accidents and preventing the recurrence of such accidents. B) Ensuring explainability AI service providers and business users may be expected to ensure explainability on the judgments of AI. In light of the characteristics of the technologies to be used and their usage, in what cases and to what extent is explainability expected to be ensured? Especially in the case of using AI in fields where the judgments of AI might have significant influences on individual rights and interests, such as the fields of medical care, personnel evaluation and recruitment and financing, explainability on the judgments of AI may be expected to be ensured. (For example, we have to pay attention to the current situation where deep learning has high prediction accuracy, but it is difficult to explain its judgment.)

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in Draft AI Utilization Principles, Jul 17, 2018