Accountability

Those responsible for the different phases of the AI system lifecycle should be identifiable and accountable for the outcomes of the AI systems, and human oversight of AI systems should be enabled. This principle aims to acknowledge the relevant organisations' and individuals’ responsibility for the outcomes of the AI systems that they design, develop, deploy and operate. The application of legal principles regarding accountability for AI systems is still developing. Mechanisms should be put in place to ensure responsibility and accountability for AI systems and their outcomes. This includes both before and after their design, development, deployment and operation. The organisation and individual accountable for the decision should be identifiable as necessary. They must consider the appropriate level of human control or oversight for the particular AI system or use case. AI systems that have a significant impact on an individual's rights should be accountable to external review, this includes providing timely, accurate, and complete information for the purposes of independent oversight bodies.
Principle: AI Ethics Principles, Nov 7, 2019

Published by Department of Industry, Innovation and Science, Australian Government

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

I. Human agency and oversight

AI systems should support individuals in making better, more informed choices in accordance with their goals. They should act as enablers to a flourishing and equitable society by supporting human agency and fundamental rights, and not decrease, limit or misguide human autonomy. The overall wellbeing of the user should be central to the system's functionality. Human oversight helps ensuring that an AI system does not undermine human autonomy or causes other adverse effects. Depending on the specific AI based system and its application area, the appropriate degrees of control measures, including the adaptability, accuracy and explainability of AI based systems, should be ensured. Oversight may be achieved through governance mechanisms such as ensuring a human in the loop, human on the loop, or human in command approach. It must be ensured that public authorities have the ability to exercise their oversight powers in line with their mandates. All other things being equal, the less oversight a human can exercise over an AI system, the more extensive testing and stricter governance is required.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

IV. Transparency

The traceability of AI systems should be ensured; it is important to log and document both the decisions made by the systems, as well as the entire process (including a description of data gathering and labelling, and a description of the algorithm used) that yielded the decisions. Linked to this, explainability of the algorithmic decision making process, adapted to the persons involved, should be provided to the extent possible. Ongoing research to develop explainability mechanisms should be pursued. In addition, explanations of the degree to which an AI system influences and shapes the organisational decision making process, design choices of the system, as well as the rationale for deploying it, should be available (hence ensuring not just data and system transparency, but also business model transparency). Finally, it is important to adequately communicate the AI system’s capabilities and limitations to the different stakeholders involved in a manner appropriate to the use case at hand. Moreover, AI systems should be identifiable as such, ensuring that users know they are interacting with an AI system and which persons are responsible for it.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

VII. Accountability

Mechanisms should be put in place to ensure responsibility and accountability for AI systems and their outcomes, both before and after their implementation. Auditability of AI systems is key in this regard, as the assessment of AI systems by internal and external auditors, and the availability of such evaluation reports, strongly contributes to the trustworthiness of the technology. External auditability should especially be ensured in applications affecting fundamental rights, including safety critical applications. Potential negative impacts of AI systems should be identified, assessed, documented and minimised. The use of impact assessments facilitates this process. These assessments should be proportionate to the extent of the risks that the AI systems pose. Trade offs between the requirements – which are often unavoidable – should be addressed in a rational and methodological manner, and should be accounted for. Finally, when unjust adverse impact occurs, accessible mechanisms should be foreseen that ensure adequate redress.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

4. Governance of AI Autonomy (Human oversight)

The correct approach to assuring properties such as safety, accuracy, adaptability, privacy, explicability, compliance with the rule of law and ethical conformity heavily depends on specific details of the AI system, its area of application, its level of impact on individuals, communities or society and its level of autonomy. The level of autonomy results from the use case and the degree of sophistication needed for a task. All other things being equal, the greater degree of autonomy that is given to an AI system, the more extensive testing and stricter governance is required. It must be ensured that AI systems continue to behave as intended when feedback signals become sparser. Depending on the area of application and or the level of impact on individuals, communities or society of the AI system, different levels or instances of governance (incl. human oversight) will be necessary. This is relevant for a large number of AI applications, and more particularly for the use of AI to suggest or take decisions concerning individuals or communities (algorithmic decision support). Good governance of AI autonomy in this respect includes for instance more or earlier human intervention depending on the level of societal impact of the AI system. This also includes the predicament that a user of an AI system, particularly in a work or decision making environment, is allowed to deviate from a path or decision chosen or recommended by the AI system.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018