Informed consent

Measures should be taken to ensure that stakeholders of AI systems are with sufficient informed consent about the impact of the system on their rights and interests. When unexpected circumstances occur, reasonable data and service revocation mechanisms should be established to ensure that users' own rights and interests are not infringed.
Principle: Beijing AI Principles, May 25, 2019

Published by Beijing Academy of Artificial Intelligence (BAAI); Peking University; Tsinghua University; Institute of Automation, Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences; Artifical Intelligence Industry Innovation Strategy Alliance (AITISA); etc.

Related Principles

Fairness

Throughout their lifecycle, AI systems should be inclusive and accessible, and should not involve or result in unfair discrimination against individuals, communities or groups. This principle aims to ensure that AI systems are fair and that they enable inclusion throughout their entire lifecycle. AI systems should be user centric and designed in a way that allows all people interacting with it to access the related products or services. This includes both appropriate consultation with stakeholders, who may be affected by the AI system throughout its lifecycle, and ensuring people receive equitable access and treatment. This is particularly important given concerns about the potential for AI to perpetuate societal injustices and have a disparate impact on vulnerable and underrepresented groups including, but not limited to, groups relating to age, disability, race, sex, intersex status, gender identity and sexual orientation. Measures should be taken to ensure the AI produced decisions are compliant with anti‐discrimination laws.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

III. Privacy and Data Governance

Privacy and data protection must be guaranteed at all stages of the AI system’s life cycle. Digital records of human behaviour may allow AI systems to infer not only individuals’ preferences, age and gender but also their sexual orientation, religious or political views. To allow individuals to trust the data processing, it must be ensured that they have full control over their own data, and that data concerning them will not be used to harm or discriminate against them. In addition to safeguarding privacy and personal data, requirements must be fulfilled to ensure high quality AI systems. The quality of the data sets used is paramount to the performance of AI systems. When data is gathered, it may reflect socially constructed biases, or contain inaccuracies, errors and mistakes. This needs to be addressed prior to training an AI system with any given data set. In addition, the integrity of the data must be ensured. Processes and data sets used must be tested and documented at each step such as planning, training, testing and deployment. This should also apply to AI systems that were not developed in house but acquired elsewhere. Finally, the access to data must be adequately governed and controlled.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

1. Principle 1 — Human Rights

Issue: How can we ensure that A IS do not infringe upon human rights? [Candidate Recommendations] To best honor human rights, society must assure the safety and security of A IS so that they are designed and operated in a way that benefits humans: 1. Governance frameworks, including standards and regulatory bodies, should be established to oversee processes assuring that the use of A IS does not infringe upon human rights, freedoms, dignity, and privacy, and of traceability to contribute to the building of public trust in A IS. 2. A way to translate existing and forthcoming legal obligations into informed policy and technical considerations is needed. Such a method should allow for differing cultural norms as well as legal and regulatory frameworks. 3. For the foreseeable future, A IS should not be granted rights and privileges equal to human rights: A IS should always be subordinate to human judgment and control.

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems in Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society in Guiding Principles and Recommendations, Apr 18, 2017

Ensuring Accountability

Principle: Legal accountability has to be ensured when human agency is replaced by decisions of AI agents. Recommendations: Ensure legal certainty: Governments should ensure legal certainty on how existing laws and policies apply to algorithmic decision making and the use of autonomous systems to ensure a predictable legal environment. This includes working with experts from all disciplines to identify potential gaps and run legal scenarios. Similarly, those designing and using AI should be in compliance with existing legal frameworks. Put users first: Policymakers need to ensure that any laws applicable to AI systems and their use put users’ interests at the center. This must include the ability for users to challenge autonomous decisions that adversely affect their interests. Assign liability up front: Governments working with all stakeholders need to make some difficult decisions now about who will be liable in the event that something goes wrong with an AI system, and how any harm suffered will be remedied.

Published by Internet Society in Guiding Principles and Recommendations, Apr 18, 2017