Fifth principle: Reliability

AI enabled systems must be demonstrably reliable, robust and secure. The MOD’s AI enabled systems must be suitably reliable; they must fulfil their intended design and deployment criteria and perform as expected, within acceptable performance parameters. Those parameters must be regularly reviewed and tested for reliability to be assured on an ongoing basis, particularly as AI enabled systems learn and evolve over time, or are deployed in new contexts. Given Defence’s unique operational context and the challenges of the information environment, this principle also requires AI enabled systems to be secure, and a robust approach to cybersecurity, data protection and privacy. MOD personnel working with or alongside AI enabled systems can build trust in those systems by ensuring that they have a suitable level of understanding of the performance and parameters of those systems, as articulated in the principle of understanding.
Principle: Ethical Principles for AI in Defence, Jun 15, 2022

Published by The Ministry of Defence (MOD), United Kingdom

Related Principles

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

· Safety Assurance Framework

Frontier AI developers must demonstrate to domestic authorities that the systems they develop or deploy will not cross red lines such as those defined in the IDAIS Beijing consensus statement. To implement this, we need to build further scientific consensus on risks and red lines. Additionally, we should set early warning thresholds: levels of model capabilities indicating that a model may cross or come close to crossing a red line. This approach builds on and harmonizes the existing patchwork of voluntary commitments such as responsible scaling policies. Models whose capabilities fall below early warning thresholds require only limited testing and evaluation, while more rigorous assurance mechanisms are needed for advanced AI systems exceeding these early warning thresholds. Although testing can alert us to risks, it only gives us a coarse grained understanding of a model. This is insufficient to provide safety guarantees for advanced AI systems. Developers should submit a high confidence safety case, i.e., a quantitative analysis that would convince the scientific community that their system design is safe, as is common practice in other safety critical engineering disciplines. Additionally, safety cases for sufficiently advanced systems should discuss organizational processes, including incentives and accountability structures, to favor safety. Pre deployment testing, evaluation and assurance are not sufficient. Advanced AI systems may increasingly engage in complex multi agent interactions with other AI systems and users. This interaction may lead to emergent risks that are difficult to predict. Post deployment monitoring is a critical part of an overall assurance framework, and could include continuous automated assessment of model behavior, centralized AI incident tracking databases, and reporting of the integration of AI in critical systems. Further assurance should be provided by automated run time checks, such as by verifying that the assumptions of a safety case continue to hold and safely shutting down a model if operated in an out of scope environment. States have a key role to play in ensuring safety assurance happens. States should mandate that developers conduct regular testing for concerning capabilities, with transparency provided through independent pre deployment audits by third parties granted sufficient access to developers’ staff, systems and records necessary to verify the developer’s claims. Additionally, for models exceeding early warning thresholds, states could require that independent experts approve a developer’s safety case prior to further training or deployment. Moreover, states can help institute ethical norms for AI engineering, for example by stipulating that engineers have an individual duty to protect the public interest similar to those held by medical or legal professionals. Finally, states will also need to build governance processes to ensure adequate post deployment monitoring. While there may be variations in Safety Assurance Frameworks required nationally, states should collaborate to achieve mutual recognition and commensurability of frameworks.

Published by IDAIS (International Dialogues on AI Safety) in IDAIS-Venice, Sept 5, 2024

· Build and Validate:

1 To develop a sound and functional AI system that is both reliable and safe, the AI system’s technical construct should be accompanied by a comprehensive methodology to test the quality of the predictive data based systems and models according to standard policies and protocols. 2 To ensure the technical robustness of an AI system rigorous testing, validation, and re assessment as well as the integration of adequate mechanisms of oversight and controls into its development is required. System integration test sign off should be done with relevant stakeholders to minimize risks and liability. 3 Automated AI systems involving scenarios where decisions are understood to have an impact that is irreversible or difficult to reverse or may involve life and death decisions should trigger human oversight and final determination. Furthermore, AI systems should not be used for social scoring or mass surveillance purposes.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

Second principle: Responsibility

Human responsibility for AI enabled systems must be clearly established, ensuring accountability for their outcomes, with clearly defined means by which human control is exercised throughout their lifecycles. The increased speed, complexity and automation of AI enabled systems may complicate our understanding of pre existing concepts of human control, responsibility and accountability. This may occur through the sorting and filtering of information presented to decision makers, the automation of previously human led processes, or processes by which AI enabled systems learn and evolve after their initial deployment. Nevertheless, as unique moral agents, humans must always be responsible for the ethical use of AI in Defence. Human responsibility for the use of AI enabled systems in Defence must be underpinned by a clear and consistent articulation of the means by which human control is exercised, and the nature and limitations of that control. While the level of human control will vary according to the context and capabilities of each AI enabled system, the ability to exercise human judgement over their outcomes is essential. Irrespective of the use case, Responsibility for each element of an AI enabled system, and an articulation of risk ownership, must be clearly defined from development, through deployment – including redeployment in new contexts – to decommissioning. This includes cases where systems are complex amalgamations of AI and non AI components, from multiple different suppliers. In this way, certain aspects of responsibility may reach beyond the team deploying a particular system, to other functions within the MOD, or beyond, to the third parties which build or integrate AI enabled systems for Defence. Collectively, these articulations of human control, responsibility and risk ownership must enable clear accountability for the outcomes of any AI enabled system in Defence. There must be no deployment or use without clear lines of responsibility and accountability, which should not be accepted by the designated duty holder unless they are satisfied that they can exercise control commensurate with the various risks.

Published by The Ministry of Defence (MOD), United Kingdom in Ethical Principles for AI in Defence, Jun 15, 2022

Third principle: Understanding

AI enabled systems, and their outputs, must be appropriately understood by relevant individuals, with mechanisms to enable this understanding made an explicit part of system design. Effective and ethical decision making in Defence, from the frontline of combat to back office operations, is always underpinned by appropriate understanding of context by those making decisions. Defence personnel must have an appropriate, context specific understanding of the AI enabled systems they operate and work alongside. This level of understanding will naturally differ depending on the knowledge required to act ethically in a given role and with a given system. It may include an understanding of the general characteristics, benefits and limitations of AI systems. It may require knowledge of a system’s purposes and correct environment for use, including scenarios where a system should not be deployed or used. It may also demand an understanding of system performance and potential fail states. Our people must be suitably trained and competent to operate or understand these tools. To enable this understanding, we must be able to verify that our AI enabled systems work as intended. While the ‘black box’ nature of some machine learning systems means that they are difficult to fully explain, we must be able to audit either the systems or their outputs to a level that satisfies those who are duly and formally responsible and accountable. Mechanisms to interpret and understand our systems must be a crucial and explicit part of system design across the entire lifecycle. This requirement for context specific understanding based on technically understandable systems must also reach beyond the MOD, to commercial suppliers, allied forces and civilians. Whilst absolute transparency as to the workings of each AI enabled system is neither desirable nor practicable, public consent and collaboration depend on context specific shared understanding. What our systems do, how we intend to use them, and our processes for ensuring beneficial outcomes result from their use should be as transparent as possible, within the necessary constraints of the national security context.

Published by The Ministry of Defence (MOD), United Kingdom in Ethical Principles for AI in Defence, Jun 15, 2022