2. Access and redress

Regulators should encourage the adoption of mechanisms that enable questioning and redress for individuals and groups that are adversely affected by algorithmically informed decisions.
Principle: Principles for Algorithmic Transparency and Accountability, Jan 12, 2017

Published by ACM US Public Policy Council (USACM)

Related Principles

Fairness

Throughout their lifecycle, AI systems should be inclusive and accessible, and should not involve or result in unfair discrimination against individuals, communities or groups. This principle aims to ensure that AI systems are fair and that they enable inclusion throughout their entire lifecycle. AI systems should be user centric and designed in a way that allows all people interacting with it to access the related products or services. This includes both appropriate consultation with stakeholders, who may be affected by the AI system throughout its lifecycle, and ensuring people receive equitable access and treatment. This is particularly important given concerns about the potential for AI to perpetuate societal injustices and have a disparate impact on vulnerable and underrepresented groups including, but not limited to, groups relating to age, disability, race, sex, intersex status, gender identity and sexual orientation. Measures should be taken to ensure the AI produced decisions are compliant with anti‐discrimination laws.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· Informed consent

Measures should be taken to ensure that stakeholders of AI systems are with sufficient informed consent about the impact of the system on their rights and interests. When unexpected circumstances occur, reasonable data and service revocation mechanisms should be established to ensure that users' own rights and interests are not infringed.

Published by Beijing Academy of Artificial Intelligence (BAAI); Peking University; Tsinghua University; Institute of Automation, Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences; Artifical Intelligence Industry Innovation Strategy Alliance (AITISA); etc. in Beijing AI Principles, May 25, 2019

• Require Accountability for Ethical Design and Implementation

The social implications of computing have grown and will continue to expand as more people have access to implementations of AI. Public policy should work to identify and mitigate discrimination caused by the use of AI and encourage designing in protections against these harms. [Recommendations] • Standing for “Accountable Artificial Intelligence”: Governments, industry and academia should apply the Information Accountability Foundation’s principles to AI. Organizations implementing AI solutions should be able to demonstrate to regulators that they have the right processes, policies and resources in place to meet those principles. • Transparent decisions: Governments should determine which AI implementations require algorithm explainability to mitigate discrimination and harm to individuals.

Published by Intel in AI public policy principles, Oct 18, 2017

1 Protect autonomy

Adoption of AI can lead to situations in which decision making could be or is in fact transferred to machines. The principle of autonomy requires that any extension of machine autonomy not undermine human autonomy. In the context of health care, this means that humans should remain in full control of health care systems and medical decisions. AI systems should be designed demonstrably and systematically to conform to the principles and human rights with which they cohere; more specifically, they should be designed to assist humans, whether they be medical providers or patients, in making informed decisions. Human oversight may depend on the risks associated with an AI system but should always be meaningful and should thus include effective, transparent monitoring of human values and moral considerations. In practice, this could include deciding whether to use an AI system for a particular health care decision, to vary the level of human discretion and decision making and to develop AI technologies that can rank decisions when appropriate (as opposed to a single decision). These practicescan ensure a clinician can override decisions made by AI systems and that machine autonomy can be restricted and made “intrinsically reversible”. Respect for autonomy also entails the related duties to protect privacy and confidentiality and to ensure informed, valid consent by adopting appropriate legal frameworks for data protection. These should be fully supported and enforced by governments and respected by companies and their system designers, programmers, database creators and others. AI technologies should not be used for experimentation or manipulation of humans in a health care system without valid informed consent. The use of machine learning algorithms in diagnosis, prognosis and treatment plans should be incorporated into the process for informed and valid consent. Essential services should not be circumscribed or denied if an individual withholds consent and that additional incentives or inducements should not be offered by either a government or private parties to individuals who do provide consent. Data protection laws are one means of safeguarding individual rights and place obligations on data controllers and data processors. Such laws are necessary to protect privacy and the confidentiality of patient data and to establish patients’ control over their data. Construed broadly, data protection laws should also make it easy for people to access their own health data and to move or share those data as they like. Because machine learning requires large amounts of data – big data – these laws are increasingly important.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021

4 Foster responsibility and accountability

Humans require clear, transparent specification of the tasks that systems can perform and the conditions under which they can achieve the desired level of performance; this helps to ensure that health care providers can use an AI technology responsibly. Although AI technologies perform specific tasks, it is the responsibility of human stakeholders to ensure that they can perform those tasks and that they are used under appropriate conditions. Responsibility can be assured by application of “human warranty”, which implies evaluation by patients and clinicians in the development and deployment of AI technologies. In human warranty, regulatory principles are applied upstream and downstream of the algorithm by establishing points of human supervision. The critical points of supervision are identified by discussions among professionals, patients and designers. The goal is to ensure that the algorithm remains on a machine learning development path that is medically effective, can be interrogated and is ethically responsible; it involves active partnership with patients and the public, such as meaningful public consultation and debate (101). Ultimately, such work should be validated by regulatory agencies or other supervisory authorities. When something does go wrong in application of an AI technology, there should be accountability. Appropriate mechanisms should be adopted to ensure questioning by and redress for individuals and groups adversely affected by algorithmically informed decisions. This should include access to prompt, effective remedies and redress from governments and companies that deploy AI technologies for health care. Redress should include compensation, rehabilitation, restitution, sanctions where necessary and a guarantee of non repetition. The use of AI technologies in medicine requires attribution of responsibility within complex systems in which responsibility is distributed among numerous agents. When medical decisions by AI technologies harm individuals, responsibility and accountability processes should clearly identify the relative roles of manufacturers and clinical users in the harm. This is an evolving challenge and remains unsettled in the laws of most countries. Institutions have not only legal liability but also a duty to assume responsibility for decisions made by the algorithms they use, even if it is not feasible to explain in detail how the algorithms produce their results. To avoid diffusion of responsibility, in which “everybody’s problem becomes nobody’s responsibility”, a faultless responsibility model (“collective responsibility”), in which all the agents involved in the development and deployment of an AI technology are held responsible, can encourage all actors to act with integrity and minimize harm. In such a model, the actual intentions of each agent (or actor) or their ability to control an outcome are not considered.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021