· Accountability

People and corporations who design and deploy AI systems must be accountable for how their systems are designed and operated. The development of AI must be responsible, safe and useful. AI must maintain the legal status of tools, and legal persons need to retain control over, and responsibility for, these tools at all times. Workers, job applicants and ex workers must also have the “right of explanation” when AI systems are used in human resource procedures, such as recruitment, promotion or dismissal. They should also be able to appeal decisions by AI and have them reviewed by a human.
Principle: Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

Published by Centre for International Governance Innovation (CIGI), Canada

Related Principles

Accountability

Those responsible for the different phases of the AI system lifecycle should be identifiable and accountable for the outcomes of the AI systems, and human oversight of AI systems should be enabled. This principle aims to acknowledge the relevant organisations' and individuals’ responsibility for the outcomes of the AI systems that they design, develop, deploy and operate. The application of legal principles regarding accountability for AI systems is still developing. Mechanisms should be put in place to ensure responsibility and accountability for AI systems and their outcomes. This includes both before and after their design, development, deployment and operation. The organisation and individual accountable for the decision should be identifiable as necessary. They must consider the appropriate level of human control or oversight for the particular AI system or use case. AI systems that have a significant impact on an individual's rights should be accountable to external review, this includes providing timely, accurate, and complete information for the purposes of independent oversight bodies.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

4. Adopt a Human In Command Approach

An absolute precondition is that the development of AI must be responsible, safe and useful, where machines maintain the legal status of tools, and legal persons retain control over, and responsibility for, these machines at all times. This entails that AI systems should be designed and operated to comply with existing law, including privacy. Workers should have the right to access, manage and control the data AI systems generate, given said systems’ power to analyse and utilize that data (See principle 1 in “Top 10 principles for workers’ data privacy and protection”). Workers must also have the ‘right of explanation’ when AI systems are used in human resource procedures, such as recruitment, promotion or dismissal.

Published by UNI Global Union in Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017

1 Protect autonomy

Adoption of AI can lead to situations in which decision making could be or is in fact transferred to machines. The principle of autonomy requires that any extension of machine autonomy not undermine human autonomy. In the context of health care, this means that humans should remain in full control of health care systems and medical decisions. AI systems should be designed demonstrably and systematically to conform to the principles and human rights with which they cohere; more specifically, they should be designed to assist humans, whether they be medical providers or patients, in making informed decisions. Human oversight may depend on the risks associated with an AI system but should always be meaningful and should thus include effective, transparent monitoring of human values and moral considerations. In practice, this could include deciding whether to use an AI system for a particular health care decision, to vary the level of human discretion and decision making and to develop AI technologies that can rank decisions when appropriate (as opposed to a single decision). These practicescan ensure a clinician can override decisions made by AI systems and that machine autonomy can be restricted and made “intrinsically reversible”. Respect for autonomy also entails the related duties to protect privacy and confidentiality and to ensure informed, valid consent by adopting appropriate legal frameworks for data protection. These should be fully supported and enforced by governments and respected by companies and their system designers, programmers, database creators and others. AI technologies should not be used for experimentation or manipulation of humans in a health care system without valid informed consent. The use of machine learning algorithms in diagnosis, prognosis and treatment plans should be incorporated into the process for informed and valid consent. Essential services should not be circumscribed or denied if an individual withholds consent and that additional incentives or inducements should not be offered by either a government or private parties to individuals who do provide consent. Data protection laws are one means of safeguarding individual rights and place obligations on data controllers and data processors. Such laws are necessary to protect privacy and the confidentiality of patient data and to establish patients’ control over their data. Construed broadly, data protection laws should also make it easy for people to access their own health data and to move or share those data as they like. Because machine learning requires large amounts of data – big data – these laws are increasingly important.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021

4 Foster responsibility and accountability

Humans require clear, transparent specification of the tasks that systems can perform and the conditions under which they can achieve the desired level of performance; this helps to ensure that health care providers can use an AI technology responsibly. Although AI technologies perform specific tasks, it is the responsibility of human stakeholders to ensure that they can perform those tasks and that they are used under appropriate conditions. Responsibility can be assured by application of “human warranty”, which implies evaluation by patients and clinicians in the development and deployment of AI technologies. In human warranty, regulatory principles are applied upstream and downstream of the algorithm by establishing points of human supervision. The critical points of supervision are identified by discussions among professionals, patients and designers. The goal is to ensure that the algorithm remains on a machine learning development path that is medically effective, can be interrogated and is ethically responsible; it involves active partnership with patients and the public, such as meaningful public consultation and debate (101). Ultimately, such work should be validated by regulatory agencies or other supervisory authorities. When something does go wrong in application of an AI technology, there should be accountability. Appropriate mechanisms should be adopted to ensure questioning by and redress for individuals and groups adversely affected by algorithmically informed decisions. This should include access to prompt, effective remedies and redress from governments and companies that deploy AI technologies for health care. Redress should include compensation, rehabilitation, restitution, sanctions where necessary and a guarantee of non repetition. The use of AI technologies in medicine requires attribution of responsibility within complex systems in which responsibility is distributed among numerous agents. When medical decisions by AI technologies harm individuals, responsibility and accountability processes should clearly identify the relative roles of manufacturers and clinical users in the harm. This is an evolving challenge and remains unsettled in the laws of most countries. Institutions have not only legal liability but also a duty to assume responsibility for decisions made by the algorithms they use, even if it is not feasible to explain in detail how the algorithms produce their results. To avoid diffusion of responsibility, in which “everybody’s problem becomes nobody’s responsibility”, a faultless responsibility model (“collective responsibility”), in which all the agents involved in the development and deployment of an AI technology are held responsible, can encourage all actors to act with integrity and minimize harm. In such a model, the actual intentions of each agent (or actor) or their ability to control an outcome are not considered.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021