(l) Sustainability:

For all AI applications, the potential benefits need to be balanced against the environmental impact of the entire AI and IT production cycle.
Principle: Suggested generic principles for the development, implementation and use of AI, Mar 21, 2019

Published by The Extended Working Group on Ethics of Artificial Intelligence (AI) of the World Commission on the Ethics of Scientific Knowledge and Technology (COMEST), UNESCO

Related Principles

· (4) Security

Positive utilization of AI means that many social systems will be automated, and the safety of the systems will be improved. On the other hand, within the scope of today's technologies, it is impossible for AI to respond appropriately to rare events or deliberate attacks. Therefore, there is a new security risk for the use of AI. Society should always be aware of the balance of benefits and risks, and should work to improve social safety and sustainability as a whole. Society must promote broad and deep research and development in AI (from immediate measures to deep understanding), such as the proper evaluation of risks in the utilization of AI and research to reduce risks. Society must also pay attention to risk management, including cybersecurity awareness. Society should always pay attention to sustainability in the use of AI. Society should not, in particular, be uniquely dependent on single AI or a few specified AI.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI, Dec 27, 2018


The development and use of AIS must be carried out so as to ensure a strong environmental sustainability of the planet. 1) AIS hardware, its digital infrastructure and the relevant objects on which it relies such as data centres, must aim for the greatest energy efficiency and to mitigate greenhouse gas emissions over its entire life cycle. 2) AIS hardware, its digital infrastructure and the relevant objects on which it relies, must aim to generate the least amount of electric and electronic waste and to provide for maintenance, repair, and recycling procedures according to the principles of circular economy. 3) AIS hardware, its digital infrastructure and the relevant objects on which it relies, must minimize our impact on ecosystems and biodiversity at every stage of its life cycle, notably with respect to the extraction of resources and the ultimate disposition of the equipment when it has reached the end of its useful life. 4) Public and private actors must support the environmentally responsible development of AIS in order to combat the waste of natural resources and produced goods, build sustainable supply chains and trade, and reduce global pollution.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018


2.1. Risk based approach. The level of attention to ethical issues in AI and the nature of the relevant actions of AI Actors should be proportional to the assessment of the level of risk posed by specific technologies and AISs and the interests of individuals and society. Risk level assessment must take into account both the known and possible risks; in this case, the level of probability of threats should be taken into account as well as their possible scale in the short and long term. In the field of AI development, making decisions that are significant to society and the state should be accompanied by scientifically verified and interdisciplinary forecasting of socio economic consequences and risks, as well as by the examination of possible changes in the value and cultural paradigm of the development of society, while taking into account national priorities. In pursuance of this Code, the development and use of an AIS risk assessment methodology is recommended. 2.2. Responsible attitude. AI Actors should have a responsible approach to the aspects of AIS that influence society and citizens at every stage of the AIS life cycle. These include privacy; the ethical, safe and responsible use of personal data; the nature, degree and amount of damage that may follow as a result of the use of the technology and AIS; and the selection and use of companion hardware and software. In this case, the responsibility of the AI Actors must correspond to the nature, degree and amount of damage that may occur as a result of the use of technologies and AIS, while taking into account the role of the AI Actor in the life cycle of AIS, as well as the degree of possible and real impact of a particular AI Actor on causing damage, as well as its size. 2.3. Precautions. When the activities of AI Actors can lead to morally unacceptable consequences for individuals and society, the occurrence of which the corresponding AI Actor can reasonably assume, measures should be taken to prevent or limit the occurrence of such consequences. To assess the moral acceptability of consequences and the possible measures to prevent them, Actors can use the provisions of this Code, including the mechanisms specified in Section 2. 2.4. No harm. AI Actors should not allow use of AI technologies for the purpose of causing harm to human life, the environment and or the health or property of citizens and legal entities. Any application of an AIS capable of purposefully causing harm to the environment, human life or health or the property of citizens and legal entities during any stage, including design, development, testing, implementation or operation, is unacceptable. 2.5. Identification of AI in communication with a human. AI Actors are encouraged to ensure that users are informed of their interactions with the AIS when it affects their rights and critical areas of their lives and to ensure that such interactions can be terminated at the request of the user. 2.6. Data security AI Actors must comply with the legislation of the Russian Federation in the field of personal data and secrets protected by law when using an AIS. Furthermore, they must ensure the protection and protection of personal data processed by an AIS or AI Actors in order to develop and improve the AIS by developing and implementing innovative methods of controlling unauthorized access by third parties to personal data and using high quality and representative datasets from reliable sources and obtained without breaking the law. 2.7. Information security. AI Actors should provide the maximum possible protection against unauthorized interference in the work of the AI by third parties by introducing adequate information security technologies, including the use of internal mechanisms for protecting the AIS from unauthorized interventions and informing users and developers about such interventions. They must also inform users about the rules regarding information security when using the AIS. 2.8. Voluntary certification and Code compliance. AI Actors can implement voluntary certification for the compliance of the developed AI technologies with the standards established by the legislation of the Russian Federation and this Code. AI Actors can create voluntary certification and AIS labeling systems that indicate that these systems have passed voluntary certification procedures and confirm quality standards. 2.9. Control of the recursive self improvement of AISs. AI Actors are encouraged to collaborate in the identification and verification of methods and forms of creating universal ("strong") AIS and the prevention of the possible threats that AIS carry. The use of "strong" AI technologies should be under the control of the state.

Published by AI Alliance Russia in Artificial Intelligence Code of Ethics, Oct 26, 2021

3. Human centric AI

AI should be at the service of society and generate tangible benefits for people. AI systems should always stay under human control and be driven by value based considerations. Telefónica is conscious of the fact that the implementation of AI in our products and services should in no way lead to a negative impact on human rights or the achievement of the UN’s Sustainable Development Goals. We are concerned about the potential use of AI for the creation or spreading of fake news, technology addiction, and the potential reinforcement of societal bias in algorithms in general. We commit to working towards avoiding these tendencies to the extent it is within our realm of control.

Published by Telefónica in AI Principles of Telefónica, Oct 30, 2018