· (4) Security

Positive utilization of AI means that many social systems will be automated, and the safety of the systems will be improved. On the other hand, within the scope of today's technologies, it is impossible for AI to respond appropriately to rare events or deliberate attacks. Therefore, there is a new security risk for the use of AI. Society should always be aware of the balance of benefits and risks, and should work to improve social safety and sustainability as a whole. Society must promote broad and deep research and development in AI (from immediate measures to deep understanding), such as the proper evaluation of risks in the utilization of AI and research to reduce risks. Society must also pay attention to risk management, including cybersecurity awareness. Society should always pay attention to sustainability in the use of AI. Society should not, in particular, be uniquely dependent on single AI or a few specified AI.
Principle: Social Principles of Human-centric AI, Dec 27, 2018

Published by Cabinet Office, Government of Japan

Related Principles

· (1) Human centric

Utilization of AI should not infringe upon fundamental human rights that are guaranteed by the Constitution and international norms. AI should be developed and utilized and implemented in society to expand the abilities of people and to pursue the diverse concepts of happiness of diverse people. In the AI utilized society, it is desirable that we implement appropriate mechanisms of literacy education and promotion of proper uses, so as not to over depend on AI or not to ill manipulate human decisions by exploiting AI. AI can expand human abilities and creativity not only by replacing part of human task but also by assisting human as an advanced instrument. When using AI, people must judge and decide for themselves how to use AI. Appropriate stakeholders involved in the development, provision, and utilization of AI should be responsible for the result of AI utilization, depending on the nature of the issue. In order to avoid creating digital divide and allow all people to reap the benefit of AI regardless of their digital expertise, each stakeholder should take into consideration to user friendliness of the system in the process of AI deployment.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI, Dec 27, 2018

· 2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

3. Human centric AI

AI should be at the service of society and generate tangible benefits for people. AI systems should always stay under human control and be driven by value based considerations. Telefónica is conscious of the fact that the implementation of AI in our products and services should in no way lead to a negative impact on human rights or the achievement of the UN’s Sustainable Development Goals. We are concerned about the potential use of AI for the creation or spreading of fake news, technology addiction, and the potential reinforcement of societal bias in algorithms in general. We commit to working towards avoiding these tendencies to the extent it is within our realm of control.

Published by Telefónica in AI Principles of Telefónica, Oct 30, 2018

· Transparency and explainability

37. The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. 38. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. 39. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. 40. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. 41. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021

6 Promote artificial intelligence that is responsive and sustainable

Responsiveness requires that designers, developers and users continuously, systematically and transparently examine an AI technology to determine whether it is responding adequately, appropriately and according to communicated expectations and requirements in the context in which it is used. Thus, identification of a health need requires that institutions and governments respond to that need and its context with appropriate technologies with the aim of achieving the public interest in health protection and promotion. When an AI technology is ineffective or engenders dissatisfaction, the duty to be responsive requires an institutional process to resolve the problem, which may include terminating use of the technology. Responsiveness also requires that AI technologies be consistent with wider efforts to promote health systems and environmental and workplace sustainability. AI technologies should be introduced only if they can be fully integrated and sustained in the health care system. Too often, especially in under resourced health systems, new technologies are not used or are not repaired or updated, thereby wasting scare resources that could have been invested in proven interventions. Furthermore, AI systems should be designed to minimize their ecological footprints and increase energy efficiency, so that use of AI is consistent with society’s efforts to reduce the impact of human beings on the earth’s environment, ecosystems and climate. Sustainability also requires governments and companies to address anticipated disruptions to the workplace, including training of health care workers to adapt to use of AI and potential job losses due to the use of automated systems for routine health care functions and administrative tasks.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021