VI. Societal and environmental well being

For AI to be trustworthy, its impact on the environment and other sentient beings should be taken into account. Ideally, all humans, including future generations, should benefit from biodiversity and a habitable environment. Sustainability and ecological responsibility of AI systems should hence be encouraged. The same applies to AI solutions addressing areas of global concern, such as for instance the UN Sustainable Development Goals. Furthermore, the impact of AI systems should be considered not only from an individual perspective, but also from the perspective of society as a whole. The use of AI systems should be given careful consideration particularly in situations relating to the democratic process, including opinion formation, political decision making or electoral contexts. Moreover, AI’s social impact should be considered. While AI systems can be used to enhance social skills, they can equally contribute to their deterioration.
Principle: Key requirements for trustworthy AI, Apr 8, 2019

Published by European Commission

Related Principles

Human, social and environmental wellbeing

Throughout their lifecycle, AI systems should benefit individuals, society and the environment. This principle aims to clearly indicate from the outset that AI systems should be used for beneficial outcomes for individuals, society and the environment. AI system objectives should be clearly identified and justified. AI systems that help address areas of global concern should be encouraged, like the United Nation’s Sustainable Development Goals. Ideally, AI systems should be used to benefit all human beings, including future generations. AI systems designed for legitimate internal business purposes, like increasing efficiency, can have broader impacts on individual, social and environmental wellbeing. Those impacts, both positive and negative, should be accounted for throughout the AI system's lifecycle, including impacts outside the organisation.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· (1) Human centric

Utilization of AI should not infringe upon fundamental human rights that are guaranteed by the Constitution and international norms. AI should be developed and utilized and implemented in society to expand the abilities of people and to pursue the diverse concepts of happiness of diverse people. In the AI utilized society, it is desirable that we implement appropriate mechanisms of literacy education and promotion of proper uses, so as not to over depend on AI or not to ill manipulate human decisions by exploiting AI. AI can expand human abilities and creativity not only by replacing part of human task but also by assisting human as an advanced instrument. When using AI, people must judge and decide for themselves how to use AI. Appropriate stakeholders involved in the development, provision, and utilization of AI should be responsible for the result of AI utilization, depending on the nature of the issue. In order to avoid creating digital divide and allow all people to reap the benefit of AI regardless of their digital expertise, each stakeholder should take into consideration to user friendliness of the system in the process of AI deployment.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI (Draft), Dec 27, 2018

· (4) Security

Positive utilization of AI means that many social systems will be automated, and the safety of the systems will be improved. On the other hand, within the scope of today's technologies, it is impossible for AI to respond appropriately to rare events or deliberate attacks. Therefore, there is a new security risk for the use of AI. Society should always be aware of the balance of benefits and risks, and should work to improve social safety and sustainability as a whole. Society must promote broad and deep research and development in AI (from immediate measures to deep understanding), such as the proper evaluation of risks in the utilization of AI and research to reduce risks. Society must also pay attention to risk management, including cybersecurity awareness. Society should always pay attention to sustainability in the use of AI. Society should not, in particular, be uniquely dependent on single AI or a few specified AI.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI (Draft), Dec 27, 2018

· 2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

5 Ensure inclusiveness and equity

Inclusiveness requires that AI used in health care is designed to encourage the widest possible appropriate, equitable use and access, irrespective of age, gender, income, ability or other characteristics. Institutions (e.g. companies, regulatory agencies, health systems) should hire employees from diverse backgrounds, cultures and disciplines to develop, monitor and deploy AI. AI technologies should be designed by and evaluated with the active participation of those who are required to use the system or will be affected by it, including providers and patients, and such participants should be sufficiently diverse. Participation can also be improved by adopting open source software or making source codes publicly available. AI technology – like any other technology – should be shared as widely as possible. AI technologies should be available not only in HIC and for use in contexts and for needs that apply to high income settings but they should also be adaptable to the types of devices, telecommunications infrastructure and data transfer capacity in LMIC. AI developers and vendors should also consider the diversity of languages, ability and forms of communication around the world to avoid barriers to use. Industry and governments should strive to ensure that the “digital divide” within and between countries is not widened and ensure equitable access to novel AI technologies. AI technologies should not be biased. Bias is a threat to inclusiveness and equity because it represents a departure, often arbitrary, from equal treatment. For example, a system designed to diagnose cancerous skin lesions that is trained with data on one skin colour may not generate accurate results for patients with a different skin colour, increasing the risk to their health. Unintended biases that may emerge with AI should be avoided or identified and mitigated. AI developers should be aware of the possible biases in their design, implementation and use and the potential harm that biases can cause to individuals and society. These parties also have a duty to address potential bias and avoid introducing or exacerbating health care disparities, including when testing or deploying new AI technologies in vulnerable populations. AI developers should ensure that AI data, and especially training data, do not include sampling bias and are therefore accurate, complete and diverse. If a particular racial or ethnic minority (or other group) is underrepresented in a dataset, oversampling of that group relative to its population size may be necessary to ensure that an AI technology achieves the same quality of results in that population as in better represented groups. AI technologies should minimize inevitable power disparities between providers and patients or between companies that create and deploy AI technologies and those that use or rely on them. Public sector agencies should have control over the data collectedby private health care providers, and their shared responsibilities should be defined and respected. Everyone – patients, health care providers and health care systems – should be able to benefit from an AI technology and not just the technology providers. AI technologies should be accompanied by means to provide patients with knowledge and skills to better understand their health status and to communicate effectively with health care providers. Future health literacy should include an element of information technology literacy. The effects of use of AI technologies must be monitored and evaluated, including disproportionate effects on specific groups of people when they mirror or exacerbate existing forms of bias and discrimination. Special provision should be made to protect the rights and welfare of vulnerable persons, with mechanisms for redress if such bias and discrimination emerges or is alleged.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021