(Conclusion)

We have left some of the terms above purposefully under specified to allow these principles to be broadly applicable. Applying these principles well should include understanding them within a specific context. We also suggest that these issues be revisited and discussed throughout the design, implementation, and release phases of development. Two important principles for consideration were purposefully left off of this list as they are well covered elsewhere: privacy and the impact of human experimentation. We encourage you to incorporate those issues into your overall assessment of algorithmic accountability as well.
Principle: Principles for Accountable Algorithms, Jul 22, 2016 (unconfirmed)

Published by Fairness, Accountability, and Transparency in Machine Learning (FAT/ML)

Related Principles

Preamble

Two of Deutsche Telekom’s most important goals are to keep being a trusted companion and to enhance customer experience. We see it as our responsibility as one of the leading ICT companies in Europe to foster the development of “intelligent technologies”. At least either important, these technologies, such as AI, must follow predefined ethical rules. To define a corresponding ethical framework, firstly it needs a common understanding on what AI means. Today there are several definitions of AI, like the very first one of John McCarthy (1956) “Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.” In line with other companies and main players in the field of AI we at DT think of AI as the imitation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self correction. After several decades, Artificial Intelligence has become one of the most intriguing topics of today – and the future. It has become widespread available and is discussed not only among experts but also more and more in public, politics, etc.. AI has started to influence business (new market opportunities as well as efficiency driver), society (e.g. broad discussion about autonomously driving vehicles or AI as “job machine” vs. “job killer”) and the life of each individual (AI already found its way into the living room, e.g. with voice steered digital assistants like smart speakers). But the use of AI and its possibilities confront us not only with fast developing technologies but as well as with the fact that our ethical roadmaps, based on human human interactions, might not be sufficient in this new era of technological influence. New questions arise and situations that were not imaginable in our daily lives then emerge. We as DT also want to develop and make use of AI. This technology can bring many benefits based on improving customer experience or simplicity. We are already in the game, e.g having several AI related projects running. With these comes an increase of digital responsibility on our side to ensure that AI is utilized in an ethical manner. So we as DT have to give answers to our customers, shareholders and stakeholders. The following Digital Ethics guidelines state how we as Deutsche Telekom want to build the future with AI. For us, technology serves one main purpose: It must act supportingly. Thus AI is in any case supposed to extend and complement human abilities rather than lessen them. Remark: The impact of AI on DT jobs – may it as a benefit and for value creation in the sense of job enrichment and enlargement or may it in the sense of efficiency is however not focus of these guidelines.

Published by Deutsche Telekom in Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

1. We are driven by our values

We recognize that, like with any technology, there is scope for AI to be used in ways that are not aligned with these guiding principles and the operational guidelines we are developing. In developing AI software we will remain true to our Human Rights Commitment Statement, the UN Guiding Principles on Business and Human Rights, laws, and widely accepted international norms. Wherever necessary, our AI Ethics Steering Committee will serve to advise our teams on how specific use cases are affected by these guiding principles. Where there is a conflict with our principles, we will endeavor to prevent the inappropriate use of our technology.

Published by SAP in SAP's Guiding Principles for Artificial Intelligence, Sep 18, 2018

(Preamble)

New developments in Artificial Intelligence are transforming the world, from science and industry to government administration and finance. The rise of AI decision making also implicates fundamental rights of fairness, accountability, and transparency. Modern data analysis produces significant outcomes that have real life consequences for people in employment, housing, credit, commerce, and criminal sentencing. Many of these techniques are entirely opaque, leaving individuals unaware whether the decisions were accurate, fair, or even about them. We propose these Universal Guidelines to inform and improve the design and use of AI. The Guidelines are intended to maximize the benefits of AI, to minimize the risk, and to ensure the protection of human rights. These Guidelines should be incorporated into ethical standards, adopted in national law and international agreements, and built into the design of systems. We state clearly that the primary responsibility for AI systems must reside with those institutions that fund, develop, and deploy these systems.

Published by The Public Voice coalition, established by Electronic Privacy Information Center (EPIC) in Universal Guidelines for Artificial Intelligence, Oct 23, 2018

Third principle: Understanding

AI enabled systems, and their outputs, must be appropriately understood by relevant individuals, with mechanisms to enable this understanding made an explicit part of system design. Effective and ethical decision making in Defence, from the frontline of combat to back office operations, is always underpinned by appropriate understanding of context by those making decisions. Defence personnel must have an appropriate, context specific understanding of the AI enabled systems they operate and work alongside. This level of understanding will naturally differ depending on the knowledge required to act ethically in a given role and with a given system. It may include an understanding of the general characteristics, benefits and limitations of AI systems. It may require knowledge of a system’s purposes and correct environment for use, including scenarios where a system should not be deployed or used. It may also demand an understanding of system performance and potential fail states. Our people must be suitably trained and competent to operate or understand these tools. To enable this understanding, we must be able to verify that our AI enabled systems work as intended. While the ‘black box’ nature of some machine learning systems means that they are difficult to fully explain, we must be able to audit either the systems or their outputs to a level that satisfies those who are duly and formally responsible and accountable. Mechanisms to interpret and understand our systems must be a crucial and explicit part of system design across the entire lifecycle. This requirement for context specific understanding based on technically understandable systems must also reach beyond the MOD, to commercial suppliers, allied forces and civilians. Whilst absolute transparency as to the workings of each AI enabled system is neither desirable nor practicable, public consent and collaboration depend on context specific shared understanding. What our systems do, how we intend to use them, and our processes for ensuring beneficial outcomes result from their use should be as transparent as possible, within the necessary constraints of the national security context.

Published by The Ministry of Defence (MOD), United Kingdom in Ethical Principles for AI in Defence, Jun 15, 2022

· Transparency and explainability

37. The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. 38. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. 39. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. 40. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. 41. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021