1. Responsible.

Human beings should exercise appropriate levels of judgment and remain responsible for the development, deployment, use, and outcomes of DoD AI systems.
Principle: AI Ethics Principles for DoD, Oct 31, 2019

Published by Defense Innovation Board (DIB), Department of Defense (DoD), United States

Related Principles

6. Accountability and Integrity

There needs to be human accountability and control in the design, development, and deployment of AI systems. Deployers should be accountable for decisions made by AI systems and for the compliance with applicable laws and respect for AI ethics and principles. AI actors9 should act with integrity throughout the AI system lifecycle when designing, developing, and deploying AI systems. Deployers of AI systems should ensure the proper functioning of AI systems and its compliance with applicable laws, internal AI governance policies and ethical principles. In the event of a malfunction or misuse of the AI system that results in negative outcomes, responsible individuals should act with integrity and implement mitigating actions to prevent similar incidents from happening in the future. To facilitate the allocation of responsibilities, organisations should adopt clear reporting structures for internal governance, setting out clearly the different kinds of roles and responsibilities for those involved in the AI system lifecycle. AI systems should also be designed, developed, and deployed with integrity – any errors or unethical outcomes should at minimum be documented and corrected to prevent harm to users upon deployment

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

Accountability

Those responsible for the different phases of the AI system lifecycle should be identifiable and accountable for the outcomes of the AI systems, and human oversight of AI systems should be enabled. This principle aims to acknowledge the relevant organisations' and individuals’ responsibility for the outcomes of the AI systems that they design, develop, deploy and operate. The application of legal principles regarding accountability for AI systems is still developing. Mechanisms should be put in place to ensure responsibility and accountability for AI systems and their outcomes. This includes both before and after their design, development, deployment and operation. The organisation and individual accountable for the decision should be identifiable as necessary. They must consider the appropriate level of human control or oversight for the particular AI system or use case. AI systems that have a significant impact on an individual's rights should be accountable to external review, this includes providing timely, accurate, and complete information for the purposes of independent oversight bodies.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· Build and Validate:

1 To develop a sound and functional AI system that is both reliable and safe, the AI system’s technical construct should be accompanied by a comprehensive methodology to test the quality of the predictive data based systems and models according to standard policies and protocols. 2 To ensure the technical robustness of an AI system rigorous testing, validation, and re assessment as well as the integration of adequate mechanisms of oversight and controls into its development is required. System integration test sign off should be done with relevant stakeholders to minimize risks and liability. 3 Automated AI systems involving scenarios where decisions are understood to have an impact that is irreversible or difficult to reverse or may involve life and death decisions should trigger human oversight and final determination. Furthermore, AI systems should not be used for social scoring or mass surveillance purposes.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

Plan and Design:

1 This step is crucial to design or procure an AI System in an accountable and responsible manner. The ethical responsibility and liability for the outcomes of the AI system should be attributable to stakeholders who are responsible for certain actions in the AI System Lifecycle. It is essential to set a robust governance structure that defines the authorization and responsibility areas of the internal and external stakeholders without leaving any areas of uncertainty to achieve this principle. The design approach of the AI system should respect human rights, and fundamental freedoms as well as the national laws and cultural values of the kingdom. 2 Organizations can put in place additional instruments such as impact assessments, risk mitigation frameworks, audit and due diligence mechanisms, redress, and disaster recovery plans. 3 It is essential to build and design a human controlled AI system where decisions on the processes and functionality of the technology are monitored and executed, and are susceptible to intervention from authorized users. Human governance and oversight establish the necessary control and levels of autonomy through set mechanisms.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

1. Responsible

DOD personnel will exercise appropriate levels of judgment and care while remaining responsible for the development, deployment and use of AI capabilities.

Published by Department of Defense (DoD), United States in DoD's AI ethical principles, Feb 24, 2020