· 12) Personal Privacy

People should have the right to access, manage and control the data they generate, given AI systems’ power to analyze and utilize that data.
Principle: Asilomar AI Principles, Jan 3-8, 2017

Published by Future of Life Institute (FLI), Beneficial AI 2017

Related Principles

2. Privacy Principles Privacy by Design

o We have implemented an enterprise wide Privacy by Design approach that incorporates privacy and data security into our ML and associated data processing systems. Our ML models seek to minimize access to identifiable information to ensure we are using only the personal data we need to generate insights. ADP is committed to providing individuals with a reasonable opportunity to examine their own personal data and to update it if it is incorrect.

Published by ADP in ADP: Ethics in Artificial Intelligence, 2018 (unconfirmed)

5. Privacy and Data Governance

AI systems should have proper mechanisms in place to ensure data privacy and protection and maintain and protect the quality and integrity of data throughout their entire lifecycle. Data protocols need to be set up to govern who can access data and when data can be accessed. Data privacy and protection should be respected and upheld during the design, development, and deployment of AI systems. The way data is collected, stored, generated, and deleted throughout the AI system lifecycle must comply with applicable data protection laws, data governance legislation, and ethical principles. Some data protection and privacy laws in ASEAN include Malaysia’s Personal Data Protection Act 2010, the Philippines’ Data Privacy Act of 2012, Singapore’s Personal Data Protection Act 2012, Thailand’s Personal Data Protection Act 2019, Indonesia’s Personal Data Protection Law 2022, and Vietnam’s Personal Data Protection Decree 2023. Organisations should be transparent about their data collection practices, including the types of data collected, how it is used, and who has access to it. Organisations should ensure that necessary consent is obtained from individuals before collecting, using, or disclosing personal data for AI development and deployment, or otherwise have appropriate legal basis to collect, use or disclose personal data without consent. Unnecessary or irrelevant data should not be gathered to prevent potential misuse. Data protection and governance frameworks should be set up and adhered to by developers and deployers of AI systems. These frameworks should also be periodically reviewed and updated in accordance with applicable privacy and data protection laws. For example, data protection impact assessments (DPIA) help organisations determine how data processing systems, procedures, or technologies affect individuals’ privacy and eliminate risks that might violate compliance7. However, it is important to note that DPIAs are much narrower in scope than an overall impact assessment for use of AI systems and are not sufficient as an AI risk assessment. Other components will need to be considered for a full assessment of risks associated with AI systems. Developers and deployers of AI systems should also incorporate a privacy by design principle when developing and deploying AI systems. Privacy by design is an approach that embeds privacy in every stage of the system development lifecycle. Data privacy is essential in gaining the public’s trust in technological advances. Another consideration is investing in privacy enhancing technologies to preserve privacy while allowing personal data to be used for innovation. Privacy enhancing technologies include, but are not limited to, differential privacy, where small changes are made to raw data to securely de identify inputs without having a significant impact on the results of the AI system, and zero knowledge proofs (ZKP), where ZKP hide the underlying data and answer simple questions about whether something is true or false without revealing additional information

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

· (3) Privacy

In society premised on AI, it is possible to estimate each person’s political position, economic situation, hobbies preferences, etc. with high accuracy from data on the data subject’s personal behavior. This means, when utilizing AI, that more careful treatment of personal data is necessary than simply utilizing personal information. To ensure that people are not suffered disadvantages from unexpected sharing or utilization of personal data through the internet for instance, each stakeholder must handle personal data based on the following principles. Companies or government should not infringe individual person’s freedom, dignity and equality in utilization of personal data with AI technologies. AI that uses personal data should have a mechanism that ensures accuracy and legitimacy and enable the person herself himself to be substantially involved in the management of her his privacy data. As a result, when using the AI, people can provide personal data without concerns and effectively benefit from the data they provide. Personal data must be properly protected according to its importance and sensitivity. Personal data varies from those unjust use of which would be likely to greatly affect rights and benefits of individuals (Typically thought and creed, medical history, criminal record, etc.) to those that are semi public in social life. Taking this into consideration, we have to pay enough attention to the balance between the use and protection of personal data based on the common understanding of society and the cultural background.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI, Dec 27, 2018

III. Privacy and Data Governance

Privacy and data protection must be guaranteed at all stages of the AI system’s life cycle. Digital records of human behaviour may allow AI systems to infer not only individuals’ preferences, age and gender but also their sexual orientation, religious or political views. To allow individuals to trust the data processing, it must be ensured that they have full control over their own data, and that data concerning them will not be used to harm or discriminate against them. In addition to safeguarding privacy and personal data, requirements must be fulfilled to ensure high quality AI systems. The quality of the data sets used is paramount to the performance of AI systems. When data is gathered, it may reflect socially constructed biases, or contain inaccuracies, errors and mistakes. This needs to be addressed prior to training an AI system with any given data set. In addition, the integrity of the data must be ensured. Processes and data sets used must be tested and documented at each step such as planning, training, testing and deployment. This should also apply to AI systems that were not developed in house but acquired elsewhere. Finally, the access to data must be adequately governed and controlled.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

4. Adopt a Human In Command Approach

An absolute precondition is that the development of AI must be responsible, safe and useful, where machines maintain the legal status of tools, and legal persons retain control over, and responsibility for, these machines at all times. This entails that AI systems should be designed and operated to comply with existing law, including privacy. Workers should have the right to access, manage and control the data AI systems generate, given said systems’ power to analyse and utilize that data (See principle 1 in “Top 10 principles for workers’ data privacy and protection”). Workers must also have the ‘right of explanation’ when AI systems are used in human resource procedures, such as recruitment, promotion or dismissal.

Published by UNI Global Union in Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017