Principle 5 – Reliability & Safety
The reliability and safety principle ensures that the AI system adheres to the set specifications and that the AI system behaves exactly as its designers intended and anticipated. Reliability is a measure of consistency and provides confidence in how robust a system is. It is a measure of dependability with which it operationally conforms to its intended functionality and the outcomes it produces. On the other hand, safety is a measure of how the AI system does not pose a risk of harm or danger to society and individuals. As an illustration, AI systems such as autonomous vehicles can pose a risk to people’s lives if living organisms are not properly recognized, certain scenarios are not trained for or if the system malfunctions. A reliable working system should be safe by not posing a danger to society and should have built in mechanisms to prevent harm.
The risk mitigation framework is closely related to this principle. Potential risks and unintended harms should be minimized in this aspect. The predictive model should be monitored and controlled in a periodic and continuous manner to check if its operations and functionality are aligned with the designed structure and frameworks in place. The AI system should be technically sound, robust, and developed to prevent malicious usage to exploit its data and outcomes to harm entities, individuals or communities. A continuous implementation continuous development approach is essential to ensure reliability.
Published by SDAIA in AI Ethics Principles, Sept 14, 2022