4. Human centricity

AI systems should respect human centred values and pursue benefits for human society, including human beings’ well being, nutrition, happiness, etc. It is key to ensure that people benefit from AI design, development, and deployment while being protected from potential harms. AI systems should be used to promote human well being and ensure benefit for all. Especially in instances where AI systems are used to make decisions about humans or aid them, it is imperative that these systems are designed with human benefit in mind and do not take advantage of vulnerable individuals. Human centricity should be incorporated throughout the AI system lifecycle, starting from the design to development and deployment. Actions must be taken to understand the way users interact with the AI system, how it is perceived, and if there are any negative outcomes arising from its outputs. One example of how deployers can do this is to test the AI system with a small group of internal users from varied backgrounds and demographics and incorporate their feedback in the AI system. AI systems should not be used for malicious purposes or to sway or deceive users into making decisions that are not beneficial to them or society. In this regard, developers and deployers (if developing or designing inhouse) should also ensure that dark patterns are avoided. Dark patterns refer to the use of certain design techniques to manipulate users and trick them into making decisions that they would otherwise not have made. An example of a dark pattern is employing the use of default options that do not consider the end user’s interests, such as for data sharing and tracking of the user’s other online activities. As an extension of human centricity as a principle, it is also important to ensure that the adoption of AI systems and their deployment at scale do not unduly disrupt labour and job prospects without proper assessment. Deployers are encouraged to take up impact assessments to ensure a systematic and stakeholder based review and consider how jobs can be redesigned to incorporate use of AI. Personal Data Protection Commission of Singapore’s (PDPC) Guide on Job Redesign in the Age of AI6 provides useful guidance to assist organisations in considering the impact of AI on its employees, and how work tasks can be redesigned to help employees embrace AI and move towards higher value tasks.
Principle: ASEAN Guide on AI Governance and Ethics, 2024

Published by ASEAN

Related Principles

1. Transparency and Explainability

Transparency refers to providing disclosure on when an AI system is being used and the involvement of an AI system in decision making, what kind of data it uses, and its purpose. By disclosing to individuals that AI is used in the system, individuals will become aware and can make an informed choice of whether to use the AIenabled system. Explainability is the ability to communicate the reasoning behind an AI system’s decision in a way that is understandable to a range of people, as it is not always clear how an AI system has arrived at a conclusion. This allows individuals to know the factors contributing to the AI system’s recommendation. In order to build public trust in AI, it is important to ensure that users are aware of the use of AI technology and understand how information from their interaction is used and how the AI system makes its decisions using the information provided. In line with the principle of transparency, deployers have a responsibility to clearly disclose the implementation of an AI system to stakeholders and foster general awareness of the AI system being used. With the increasing use of AI in many businesses and industries, the public is becoming more aware and interested in knowing when they are interacting with AI systems. Knowing when and how AI systems interact with users is also important in helping users discern the potential harm of interacting with an AI system that is not behaving as intended. In the past, AI algorithms have been found to discriminate against female job applicants and have failed to accurately recognise the faces of dark skinned women. It is important for users to be aware of the expected behaviour of the AI systems so they can make more informed decisions about the potential harm of interacting with AI systems. An example of transparency in an AI enabled ecommerce platform is informing users that their purchase history is used by the platform’s recommendation algorithm to identify similar products and display them on the users’ feeds. In line with the principle of explainability, developers and deployers designing, developing, and deploying AI systems should also strive to foster general understanding among users of how such systems work with simple and easy to understand explanations on how the AI system makes decisions. Understanding how AI systems work will help humans know when to trust its decisions. Explanations can have varying degrees of complexity, ranging from a simple text explanation of which factors more significantly affected the decisionmaking process to displaying a heatmap over the relevant text or on the area of an image that led to the system’s decision. For example, when an AI system is used to predict the likelihood of cardiac arrest in patients, explainability can be implemented by informing medical professionals of the most significant factors (e.g., age, blood pressure, etc.) that influenced the AI system’s decision so that they can subsequently make informed decisions on their own. Where “black box” models are deployed, rendering it difficult, if not impossible to provide explanations as to the workings of the AI system, outcome based explanations, with a focus on explaining the impact of decisionmaking or results flowing from the AI system may be relied on. Alternatively, deployers may also consider focusing on aspects relating to the quality of the AI system or preparing information that could build user confidence in the outcomes of an AI system’s processing behaviour. Some of these measures are: • Documenting the repeatability of results produced by the AI system. Some practices to demonstrate repeatability include conducting repeatability assessments to ensure deployments in live environments are repeatable and performing counterfactual fairness testing to ensure that the AI system’s decisions are the same in both the real world and in the counterfactual world. Repeatability refers to the ability of the system to consistently obtain the same results, given the same scenario. Repeatability often applies within the same environment, with the same data and the same computational conditions. • Ensuring traceability by building an audit trail to document the AI system development and decisionmaking process, implementing a black box recorder that captures all input data streams, or storing data appropriately to avoid degradation and alteration. • Facilitating auditability by keeping a comprehensive record of data provenance, procurement, preprocessing, lineage, storage, and security. Such information can also be centralised digitally in a process log to increase capacity to cater the presentation of results to different tiers of stakeholders with different interests and levels of expertise. Deployers should, however, note that auditability does not necessarily entail making certain confidential information about business models or intellectual property related to the AI system publicly available. A risk based approach can be taken towards identifying the subset of AI enabled features in the AI system for which implemented auditability is necessary to align with regulatory requirements or industry practices. • Using AI Model Cards, which are short documents accompanying trained machine learning models that disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. In cases where AI systems are procured directly from developers, deployers will have to work together with these developers to achieve transparency. More on this will be covered in later sections of the Guide.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

Preamble

Two of Deutsche Telekom’s most important goals are to keep being a trusted companion and to enhance customer experience. We see it as our responsibility as one of the leading ICT companies in Europe to foster the development of “intelligent technologies”. At least either important, these technologies, such as AI, must follow predefined ethical rules. To define a corresponding ethical framework, firstly it needs a common understanding on what AI means. Today there are several definitions of AI, like the very first one of John McCarthy (1956) “Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.” In line with other companies and main players in the field of AI we at DT think of AI as the imitation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self correction. After several decades, Artificial Intelligence has become one of the most intriguing topics of today – and the future. It has become widespread available and is discussed not only among experts but also more and more in public, politics, etc.. AI has started to influence business (new market opportunities as well as efficiency driver), society (e.g. broad discussion about autonomously driving vehicles or AI as “job machine” vs. “job killer”) and the life of each individual (AI already found its way into the living room, e.g. with voice steered digital assistants like smart speakers). But the use of AI and its possibilities confront us not only with fast developing technologies but as well as with the fact that our ethical roadmaps, based on human human interactions, might not be sufficient in this new era of technological influence. New questions arise and situations that were not imaginable in our daily lives then emerge. We as DT also want to develop and make use of AI. This technology can bring many benefits based on improving customer experience or simplicity. We are already in the game, e.g having several AI related projects running. With these comes an increase of digital responsibility on our side to ensure that AI is utilized in an ethical manner. So we as DT have to give answers to our customers, shareholders and stakeholders. The following Digital Ethics guidelines state how we as Deutsche Telekom want to build the future with AI. For us, technology serves one main purpose: It must act supportingly. Thus AI is in any case supposed to extend and complement human abilities rather than lessen them. Remark: The impact of AI on DT jobs – may it as a benefit and for value creation in the sense of job enrichment and enlargement or may it in the sense of efficiency is however not focus of these guidelines.

Published by Deutsche Telekom in Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

· 2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

Responsible Deployment

Principle: The capacity of an AI agent to act autonomously, and to adapt its behavior over time without human direction, calls for significant safety checks before deployment, and ongoing monitoring. Recommendations: Humans must be in control: Any autonomous system must allow for a human to interrupt an activity or shutdown the system (an “off switch”). There may also be a need to incorporate human checks on new decision making strategies in AI system design, especially where the risk to human life and safety is great. Make safety a priority: Any deployment of an autonomous system should be extensively tested beforehand to ensure the AI agent’s safe interaction with its environment (digital or physical) and that it functions as intended. Autonomous systems should be monitored while in operation, and updated or corrected as needed. Privacy is key: AI systems must be data responsible. They should use only what they need and delete it when it is no longer needed (“data minimization”). They should encrypt data in transit and at rest, and restrict access to authorized persons (“access control”). AI systems should only collect, use, share and store data in accordance with privacy and personal data laws and best practices. Think before you act: Careful thought should be given to the instructions and data provided to AI systems. AI systems should not be trained with data that is biased, inaccurate, incomplete or misleading. If they are connected, they must be secured: AI systems that are connected to the Internet should be secured not only for their protection, but also to protect the Internet from malfunctioning or malware infected AI systems that could become the next generation of botnets. High standards of device, system and network security should be applied. Responsible disclosure: Security researchers acting in good faith should be able to responsibly test the security of AI systems without fear of prosecution or other legal action. At the same time, researchers and others who discover security vulnerabilities or other design flaws should responsibly disclose their findings to those who are in the best position to fix the problem.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

5 Ensure inclusiveness and equity

Inclusiveness requires that AI used in health care is designed to encourage the widest possible appropriate, equitable use and access, irrespective of age, gender, income, ability or other characteristics. Institutions (e.g. companies, regulatory agencies, health systems) should hire employees from diverse backgrounds, cultures and disciplines to develop, monitor and deploy AI. AI technologies should be designed by and evaluated with the active participation of those who are required to use the system or will be affected by it, including providers and patients, and such participants should be sufficiently diverse. Participation can also be improved by adopting open source software or making source codes publicly available. AI technology – like any other technology – should be shared as widely as possible. AI technologies should be available not only in HIC and for use in contexts and for needs that apply to high income settings but they should also be adaptable to the types of devices, telecommunications infrastructure and data transfer capacity in LMIC. AI developers and vendors should also consider the diversity of languages, ability and forms of communication around the world to avoid barriers to use. Industry and governments should strive to ensure that the “digital divide” within and between countries is not widened and ensure equitable access to novel AI technologies. AI technologies should not be biased. Bias is a threat to inclusiveness and equity because it represents a departure, often arbitrary, from equal treatment. For example, a system designed to diagnose cancerous skin lesions that is trained with data on one skin colour may not generate accurate results for patients with a different skin colour, increasing the risk to their health. Unintended biases that may emerge with AI should be avoided or identified and mitigated. AI developers should be aware of the possible biases in their design, implementation and use and the potential harm that biases can cause to individuals and society. These parties also have a duty to address potential bias and avoid introducing or exacerbating health care disparities, including when testing or deploying new AI technologies in vulnerable populations. AI developers should ensure that AI data, and especially training data, do not include sampling bias and are therefore accurate, complete and diverse. If a particular racial or ethnic minority (or other group) is underrepresented in a dataset, oversampling of that group relative to its population size may be necessary to ensure that an AI technology achieves the same quality of results in that population as in better represented groups. AI technologies should minimize inevitable power disparities between providers and patients or between companies that create and deploy AI technologies and those that use or rely on them. Public sector agencies should have control over the data collectedby private health care providers, and their shared responsibilities should be defined and respected. Everyone – patients, health care providers and health care systems – should be able to benefit from an AI technology and not just the technology providers. AI technologies should be accompanied by means to provide patients with knowledge and skills to better understand their health status and to communicate effectively with health care providers. Future health literacy should include an element of information technology literacy. The effects of use of AI technologies must be monitored and evaluated, including disproportionate effects on specific groups of people when they mirror or exacerbate existing forms of bias and discrimination. Special provision should be made to protect the rights and welfare of vulnerable persons, with mechanisms for redress if such bias and discrimination emerges or is alleged.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021