· 2.4 Cybersecurity and Privacy

Just like technologies that have come before it, AI depends on strong cybersecurity and privacy provisions. We encourage governments to use strong, globally accepted and deployed cryptography and other security standards that enable trust and interoperability. We also promote voluntary information sharing on cyberattacks or hacks to better enable consumer protection. The tech sector incorporates strong security features into our products and services to advance trust, including using published algorithms as our default cryptography approach as they have the greatest trust among global stakeholders, and limiting access to encryption keys. Data and cybersecurity are integral to the success of AI. We believe for AI to flourish, users must trust that their personal and sensitive data is protected and handled appropriately. AI systems should use tools, including anonymized data, de identification, or aggregation to protect personally identifiable information whenever possible.
Principle: AI Policy Principles, Oct 24, 2017

Published by Information Technology Industry Council (ITI)

Related Principles

2. Privacy Principles Privacy by Design

o We have implemented an enterprise wide Privacy by Design approach that incorporates privacy and data security into our ML and associated data processing systems. Our ML models seek to minimize access to identifiable information to ensure we are using only the personal data we need to generate insights. ADP is committed to providing individuals with a reasonable opportunity to examine their own personal data and to update it if it is incorrect.

Published by ADP in ADP: Ethics in Artificial Intelligence, 2018 (unconfirmed)

3. Security and Safety

AI systems should be safe and sufficiently secure against malicious attacks. Safety refers to ensuring the safety of developers, deployers, and users of AI systems by conducting impact or risk assessments and ensuring that known risks have been identified and mitigated. A risk prevention approach should be adopted, and precautions should be put in place so that humans can intervene to prevent harm, or the system can safely disengage itself in the event an AI system makes unsafe decisions autonomous vehicles that cause injury to pedestrians are an illustration of this. Ensuring that AI systems are safe is essential to fostering public trust in AI. Safety of the public and the users of AI systems should be of utmost priority in the decision making process of AI systems and risks should be assessed and mitigated to the best extent possible. Before deploying AI systems, deployers should conduct risk assessments and relevant testing or certification and implement the appropriate level of human intervention to prevent harm when unsafe decisions take place. The risks, limitations, and safeguards of the use of AI should be made known to the user. For example, in AI enabled autonomous vehicles, developers and deployers should put in place mechanisms for the human driver to easily resume manual driving whenever they wish. Security refers to ensuring the cybersecurity of AI systems, which includes mechanisms against malicious attacks specific to AI such as data poisoning, model inversion, the tampering of datasets, byzantine attacks in federated learning5, as well as other attacks designed to reverse engineer personal data used to train the AI. Deployers of AI systems should work with developers to put in place technical security measures like robust authentication mechanisms and encryption. Just like any other software, deployers should also implement safeguards to protect AI systems against cyberattacks, data security attacks, and other digital security risks. These may include ensuring regular software updates to AI systems and proper access management for critical or sensitive systems. Deployers should also develop incident response plans to safeguard AI systems from the above attacks. It is also important for deployers to make a minimum list of security testing (e.g. vulnerability assessment and penetration testing) and other applicable security testing tools. Some other important considerations also include: a. Business continuity plan b. Disaster recovery plan c. Zero day attacks d. IoT devices

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

5. Privacy and Data Governance

AI systems should have proper mechanisms in place to ensure data privacy and protection and maintain and protect the quality and integrity of data throughout their entire lifecycle. Data protocols need to be set up to govern who can access data and when data can be accessed. Data privacy and protection should be respected and upheld during the design, development, and deployment of AI systems. The way data is collected, stored, generated, and deleted throughout the AI system lifecycle must comply with applicable data protection laws, data governance legislation, and ethical principles. Some data protection and privacy laws in ASEAN include Malaysia’s Personal Data Protection Act 2010, the Philippines’ Data Privacy Act of 2012, Singapore’s Personal Data Protection Act 2012, Thailand’s Personal Data Protection Act 2019, Indonesia’s Personal Data Protection Law 2022, and Vietnam’s Personal Data Protection Decree 2023. Organisations should be transparent about their data collection practices, including the types of data collected, how it is used, and who has access to it. Organisations should ensure that necessary consent is obtained from individuals before collecting, using, or disclosing personal data for AI development and deployment, or otherwise have appropriate legal basis to collect, use or disclose personal data without consent. Unnecessary or irrelevant data should not be gathered to prevent potential misuse. Data protection and governance frameworks should be set up and adhered to by developers and deployers of AI systems. These frameworks should also be periodically reviewed and updated in accordance with applicable privacy and data protection laws. For example, data protection impact assessments (DPIA) help organisations determine how data processing systems, procedures, or technologies affect individuals’ privacy and eliminate risks that might violate compliance7. However, it is important to note that DPIAs are much narrower in scope than an overall impact assessment for use of AI systems and are not sufficient as an AI risk assessment. Other components will need to be considered for a full assessment of risks associated with AI systems. Developers and deployers of AI systems should also incorporate a privacy by design principle when developing and deploying AI systems. Privacy by design is an approach that embeds privacy in every stage of the system development lifecycle. Data privacy is essential in gaining the public’s trust in technological advances. Another consideration is investing in privacy enhancing technologies to preserve privacy while allowing personal data to be used for innovation. Privacy enhancing technologies include, but are not limited to, differential privacy, where small changes are made to raw data to securely de identify inputs without having a significant impact on the results of the AI system, and zero knowledge proofs (ZKP), where ZKP hide the underlying data and answer simple questions about whether something is true or false without revealing additional information

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

· 2.3 Promoting Innovation and the Security of the Internet

We strongly support the protection of the foundation of AI, including source code, proprietary algorithms, and other intellectual property. To this end, we believe governments should avoid requiring companies to transfer or provide access to technology, source code, algorithms, or encryption keys as conditions for doing business. We support the use of all available tools, including trade agreements, to achieve these ends.

Published by Information Technology Industry Council (ITI) in AI Policy Principles, Oct 24, 2017

· Right to Privacy, and Data Protection

32. Privacy, a right essential to the protection of human dignity, human autonomy and human agency, must be respected, protected and promoted throughout the life cycle of AI systems. It is important that data for AI systems be collected, used, shared, archived and deleted in ways that are consistent with international law and in line with the values and principles set forth in this Recommendation, while respecting relevant national, regional and international legal frameworks. 33. Adequate data protection frameworks and governance mechanisms should be established in a multi stakeholder approach at the national or international level, protected by judicial systems, and ensured throughout the life cycle of AI systems. Data protection frameworks and any related mechanisms should take reference from international data protection principles and standards concerning the collection, use and disclosure of personal data and exercise of their rights by data subjects while ensuring a legitimate aim and a valid legal basis for the processing of personal data, including informed consent. 34. Algorithmic systems require adequate privacy impact assessments, which also include societal and ethical considerations of their use and an innovative use of the privacy by design approach. AI actors need to ensure that they are accountable for the design and implementation of AI systems in such a way as to ensure that personal information is protected throughout the life cycle of the AI system.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021