3. Technical reliability, Safety and security

Artificial intelligence solutions should be able to make accurate and effective decisions, while providing adequate security and defense against external attacks. Artificial intelligence solutions should be extensively tested, used with care and monitored.
Principle: Artificial Intelligence Application Criteria, Jul 8, 2019

Published by Megvii

Related Principles

3. Security and Safety

AI systems should be safe and sufficiently secure against malicious attacks. Safety refers to ensuring the safety of developers, deployers, and users of AI systems by conducting impact or risk assessments and ensuring that known risks have been identified and mitigated. A risk prevention approach should be adopted, and precautions should be put in place so that humans can intervene to prevent harm, or the system can safely disengage itself in the event an AI system makes unsafe decisions autonomous vehicles that cause injury to pedestrians are an illustration of this. Ensuring that AI systems are safe is essential to fostering public trust in AI. Safety of the public and the users of AI systems should be of utmost priority in the decision making process of AI systems and risks should be assessed and mitigated to the best extent possible. Before deploying AI systems, deployers should conduct risk assessments and relevant testing or certification and implement the appropriate level of human intervention to prevent harm when unsafe decisions take place. The risks, limitations, and safeguards of the use of AI should be made known to the user. For example, in AI enabled autonomous vehicles, developers and deployers should put in place mechanisms for the human driver to easily resume manual driving whenever they wish. Security refers to ensuring the cybersecurity of AI systems, which includes mechanisms against malicious attacks specific to AI such as data poisoning, model inversion, the tampering of datasets, byzantine attacks in federated learning5, as well as other attacks designed to reverse engineer personal data used to train the AI. Deployers of AI systems should work with developers to put in place technical security measures like robust authentication mechanisms and encryption. Just like any other software, deployers should also implement safeguards to protect AI systems against cyberattacks, data security attacks, and other digital security risks. These may include ensuring regular software updates to AI systems and proper access management for critical or sensitive systems. Deployers should also develop incident response plans to safeguard AI systems from the above attacks. It is also important for deployers to make a minimum list of security testing (e.g. vulnerability assessment and penetration testing) and other applicable security testing tools. Some other important considerations also include: a. Business continuity plan b. Disaster recovery plan c. Zero day attacks d. IoT devices

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

7. Robustness and Reliability

AI systems should be sufficiently robust to cope with errors during execution and unexpected or erroneous input, or cope with stressful environmental conditions. It should also perform consistently. AI systems should, where possible, work reliably and have consistent results for a range of inputs and situations. AI systems may have to operate in real world, dynamic conditions where input signals and conditions change quickly. To prevent harm, AI systems need to be resilient to unexpected data inputs, not exhibit dangerous behaviour, and continue to perform according to the intended purpose. Notably, AI systems are not infallible and deployers should ensure proper access control and protection of critical or sensitive systems and take actions to prevent or mitigate negative outcomes that occur due to unreliable performances. Deployers should conduct rigorous testing before deployment to ensure robustness and consistent results across a range of situations and environments. Measures such as proper documentation of data sources, tracking of data processing steps, and data lineage can help with troubleshooting AI systems.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

· 1) Robustness:

Artificial intelligence should be safe and reliable. We are dedicated to accentuating technical robustness and security throughout the research process, providing a secure and reliable system to improve the ability to prevent attack and conduct self repair.

Published by Youth Work Committee of Shanghai Computer Society in Chinese Young Scientists’ Declaration on the Governance and Innovation of Artificial Intelligence, Aug 29, 2019

· Safety and security

27. Unwanted harms (safety risks), as well as vulnerabilities to attack (security risks) should be avoided and should be addressed, prevented and eliminated throughout the life cycle of AI systems to ensure human, environmental and ecosystem safety and security. Safe and secure AI will be enabled by the development of sustainable, privacy protective data access frameworks that foster better training and validation of AI models utilizing quality data.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021