Transparency and explainability.

Transparency and explainability of AI systems are often essential preconditions for ensuring that human rights, fundamental freedoms and ethical principles are respected, protected and promoted. Individuals should have the opportunity to request explanations and information from the AI controller or relevant public sector institutions. Such controllers should inform users when a product or service is provided directly or with the help of AI systems in an appropriate and timely manner.
Principle: Recommendations for reliable artificial intelligence, Jnue 2, 2023

Published by OFFICE OF THE CHIEF OF MINISTERS UNDERSECRETARY OF INFORMATION TECHNOLOGIES

Related Principles

· 4. The Principle of Justice: “Be Fair”

For the purposes of these Guidelines, the principle of justice imparts that the development, use, and regulation of AI systems must be fair. Developers and implementers need to ensure that individuals and minority groups maintain freedom from bias, stigmatisation and discrimination. Additionally, the positives and negatives resulting from AI should be evenly distributed, avoiding to place vulnerable demographics in a position of greater vulnerability and striving for equal opportunity in terms of access to education, goods, services and technology amongst human beings, without discrimination. Justice also means that AI systems must provide users with effective redress if harm occurs, or effective remedy if data practices are no longer aligned with human beings’ individual or collective preferences. Lastly, the principle of justice also commands those developing or implementing AI to be held to high standards of accountability. Humans might benefit from procedures enabling the benchmarking of AI performance with (ethical) expectations.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

Ensure “Interpretability” of AI systems

Principle: Decisions made by an AI agent should be possible to understand, especially if those decisions have implications for public safety, or result in discriminatory practices. Recommendations: Ensure Human Interpretability of Algorithmic Decisions: AI systems must be designed with the minimum requirement that the designer can account for an AI agent’s behaviors. Some systems with potentially severe implications for public safety should also have the functionality to provide information in the event of an accident. Empower Users: Providers of services that utilize AI need to incorporate the ability for the user to request and receive basic explanations as to why a decision was made.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

· Transparency and explainability

37. The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. 38. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. 39. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. 40. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. 41. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021

3. Scientific Integrity and Information Quality

The government’s regulatory and non regulatory approaches to AI applications should leverage scientific and technical information and processes. Agencies should hold information, whether produced by the government or acquired by the government from third parties, that is likely to have a clear and substantial influence on important public policy or private sector decisions (including those made by consumers) to a high standard of quality, transparency, and compliance. Consistent with the principles of scientific integrity in the rulemaking and guidance processes, agencies should develop regulatory approaches to AI in a manner that both informs policy decisions and fosters public trust in AI. Best practices include transparently articulating the strengths, weaknesses, intended optimizations or outcomes, bias mitigation, and appropriate uses of the AI application’s results. Agencies should also be mindful that, for AI applications to produce predictable, reliable, and optimized outcomes, data used to train the AI system must be of sufficient quality for the intended use.

Published by The White House Office of Science and Technology Policy (OSTP), United States in Principles for the Stewardship of AI Applications, Nov 17, 2020

1 Protect autonomy

Adoption of AI can lead to situations in which decision making could be or is in fact transferred to machines. The principle of autonomy requires that any extension of machine autonomy not undermine human autonomy. In the context of health care, this means that humans should remain in full control of health care systems and medical decisions. AI systems should be designed demonstrably and systematically to conform to the principles and human rights with which they cohere; more specifically, they should be designed to assist humans, whether they be medical providers or patients, in making informed decisions. Human oversight may depend on the risks associated with an AI system but should always be meaningful and should thus include effective, transparent monitoring of human values and moral considerations. In practice, this could include deciding whether to use an AI system for a particular health care decision, to vary the level of human discretion and decision making and to develop AI technologies that can rank decisions when appropriate (as opposed to a single decision). These practicescan ensure a clinician can override decisions made by AI systems and that machine autonomy can be restricted and made “intrinsically reversible”. Respect for autonomy also entails the related duties to protect privacy and confidentiality and to ensure informed, valid consent by adopting appropriate legal frameworks for data protection. These should be fully supported and enforced by governments and respected by companies and their system designers, programmers, database creators and others. AI technologies should not be used for experimentation or manipulation of humans in a health care system without valid informed consent. The use of machine learning algorithms in diagnosis, prognosis and treatment plans should be incorporated into the process for informed and valid consent. Essential services should not be circumscribed or denied if an individual withholds consent and that additional incentives or inducements should not be offered by either a government or private parties to individuals who do provide consent. Data protection laws are one means of safeguarding individual rights and place obligations on data controllers and data processors. Such laws are necessary to protect privacy and the confidentiality of patient data and to establish patients’ control over their data. Construed broadly, data protection laws should also make it easy for people to access their own health data and to move or share those data as they like. Because machine learning requires large amounts of data – big data – these laws are increasingly important.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021