8. Agile Governance

The governance of AI should respect the underlying principles of AI development. In promoting the innovative and healthy development of AI, high vigilance should be maintained in order to detect and resolve possible problems in a timely manner. The governance of AI should be adaptive and inclusive, constantly upgrading the intelligence level of the technologies, optimizing management mechanisms, and engaging with muti stakeholders to improve the governance institutions. The governance principles should be promoted throughout the entire lifecycle of AI products and services. Continuous research and foresight for the potential risks of higher level of AI in the future are required to ensure that AI will always be beneficial for human society.
Principle: Governance Principles for the New Generation Artificial Intelligence--Developing Responsible Artificial Intelligence, Jun 17, 2019

Published by National Governance Committee for the New Generation Artificial Intelligence, China

Related Principles

6. Accountability and Integrity

There needs to be human accountability and control in the design, development, and deployment of AI systems. Deployers should be accountable for decisions made by AI systems and for the compliance with applicable laws and respect for AI ethics and principles. AI actors9 should act with integrity throughout the AI system lifecycle when designing, developing, and deploying AI systems. Deployers of AI systems should ensure the proper functioning of AI systems and its compliance with applicable laws, internal AI governance policies and ethical principles. In the event of a malfunction or misuse of the AI system that results in negative outcomes, responsible individuals should act with integrity and implement mitigating actions to prevent similar incidents from happening in the future. To facilitate the allocation of responsibilities, organisations should adopt clear reporting structures for internal governance, setting out clearly the different kinds of roles and responsibilities for those involved in the AI system lifecycle. AI systems should also be designed, developed, and deployed with integrity – any errors or unethical outcomes should at minimum be documented and corrected to prevent harm to users upon deployment

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

· (4) Security

Positive utilization of AI means that many social systems will be automated, and the safety of the systems will be improved. On the other hand, within the scope of today's technologies, it is impossible for AI to respond appropriately to rare events or deliberate attacks. Therefore, there is a new security risk for the use of AI. Society should always be aware of the balance of benefits and risks, and should work to improve social safety and sustainability as a whole. Society must promote broad and deep research and development in AI (from immediate measures to deep understanding), such as the proper evaluation of risks in the utilization of AI and research to reduce risks. Society must also pay attention to risk management, including cybersecurity awareness. Society should always pay attention to sustainability in the use of AI. Society should not, in particular, be uniquely dependent on single AI or a few specified AI.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI, Dec 27, 2018

Chapter 2. The Norms of Management

  5. Promotion of agile governance. Respect the law of development of AI, fully understand the potential and limitations of AI, continue to optimize the governance mechanisms and methods of AI. Do not divorce from reality, do not rush for quick success and instant benefits in the process of strategic decision making, institution construction, and resource allocation. Promote the healthy and sustainable development of AI in an orderly manner.   6. Active practice. Comply with AI related laws, regulations, policies and standards, actively integrate AI ethics into the entire management process, take the lead in becoming practitioners and promoters of AI ethics and governance, summarize and promote AI governance experiences in a timely manner, and actively respond to the society’s concerns on the ethics of AI.   7. Exercise and use power correctly. Clarify the responsibilities and power boundaries of AI related management activities, and standardize the conditions and procedures of power operations. Fully respect and protect the privacy, freedom, dignity, safety and other rights of relevant stakeholders and other legal rights and interests, and prohibit improper use of power to infringe the legal rights of natural persons, legal persons and other organizations.   8. Strengthen risk preventions. Enhance bottom line thinking and risk awareness, strengthen the research and judgment on the potential risks during the development of AI, carry out systematic risk monitoring and evaluations in a timely manner, establish an effective early warning mechanism for risks, and enhance the ability of manage, control, and disposal of ethical risks of AI.   9. Promote inclusivity and openness. Pay full attention to the rights and demands of all stakeholders related to AI, encourage the application of diverse AI technologies to solve practical problems in economic and social development, encourage cross disciplinary, cross domain, cross regional, and cross border exchanges and cooperation, and promote the formation of AI governance frameworks, standards and norms with broad consensus.

Published by National Governance Committee for the New Generation Artificial Intelligence, China in Ethical Norms for the New Generation Artificial Intelligence, Sep 25, 2021

Plan and Design:

1 This step is crucial to design or procure an AI System in an accountable and responsible manner. The ethical responsibility and liability for the outcomes of the AI system should be attributable to stakeholders who are responsible for certain actions in the AI System Lifecycle. It is essential to set a robust governance structure that defines the authorization and responsibility areas of the internal and external stakeholders without leaving any areas of uncertainty to achieve this principle. The design approach of the AI system should respect human rights, and fundamental freedoms as well as the national laws and cultural values of the kingdom. 2 Organizations can put in place additional instruments such as impact assessments, risk mitigation frameworks, audit and due diligence mechanisms, redress, and disaster recovery plans. 3 It is essential to build and design a human controlled AI system where decisions on the processes and functionality of the technology are monitored and executed, and are susceptible to intervention from authorized users. Human governance and oversight establish the necessary control and levels of autonomy through set mechanisms.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Transparency and explainability

37. The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. 38. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. 39. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. 40. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. 41. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021