· 5. A.I. must have algorithmic accountability so that humans can undo unintended harm. We must design these technologies for the expected and the unexpected.

Principle: 10 AI rules, Jun 28, 2016

Published by Satya Nadella, CEO of Microsoft

Related Principles

· Transparency

As AI increasingly changes the nature of work, workers, customers and vendors need to have information about how AI systems operate so that they can understand how decisions are made. Their involvement will help to identify potential bias, errors and unintended outcomes. Transparency is not necessarily nor only a question of open source code. While in some circumstances open source code will be helpful, what is more important are clear, complete and testable explanations of what the system is doing and why. Intellectual property, and sometimes even cyber security, is rewarded by a lack of transparency. Innovation generally, including in algorithms, is a value that should be encouraged. How, then, are these competing values to be balanced? One possibility is to require algorithmic verifiability rather than full algorithmic disclosure. Algorithmic verifiability would require companies to disclose not the actual code driving the algorithm but information allowing the effect of their algorithms to be independently assessed. In the absence of transparency regarding their algorithms’ purpose and actual effect, it is impossible to ensure that competition, labour, workplace safety, privacy and liability laws are being upheld. When accidents occur, the AI and related data will need to be transparent and accountable to an accident investigator, so that the process that led to the accident can be understood.

Published by Centre for International Governance Innovation (CIGI), Canada in Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

9. We share and enlighten.

We acknowledge the transformative power of AI for our society. We will support people and society in preparing for this future world. We live our digital responsibility by sharing our knowledge, pointing out the opportunities of the new technology without neglecting its risks. We will engage with our customers, other companies, policy makers, education institutions and all other stakeholders to ensure we understand their concerns and needs and can setup the right safeguards. We will engage in AI and ethics education. Hereby preparing ourselves, our colleagues and our fellow human beings for the new tasks ahead. Many tasks that are being executed by humans now will be automated in the future. This leads to a shift in the demand of skills. Jobs will be reshaped, rather replaced by AI. While this seems certain, the minority knows what exactly AI technology is capable of achieving. Prejudice and sciolism lead to either demonization of progress or to blind acknowledgment, both calling for educational work. We as Deutsche Telekom feel responsible to enlighten people and help society to deal with the digital shift, so that new appropriate skills can be developed and new jobs can be taken over. And we start from within – by enabling our colleagues and employees. But we are aware that this task cannot be solved by one company alone. Therefore we will engage in partnerships with other companies, offer our know how to policy makers and education providers to jointly tackle the challenges ahead.

Published by Deutsche Telekom in Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

5 DEMOCRATIC PARTICIPATION PRINCIPLE

AIS must meet intelligibility, justifiability, and accessibility criteria, and must be subjected to democratic scrutiny, debate, and control. 1) AIS processes that make decisions affecting a person’s life, quality of life, or reputation must be intelligible to their creators. 2) The decisions made by AIS affecting a person’s life, quality of life, or reputation should always be justifiable in a language that is understood by the people who use them or who are subjected to the consequences of their use. Justification consists in making transparent the most important factors and parameters shaping the decision, and should take the same form as the justification we would demand of a human making the same kind of decision. 3) The code for algorithms, whether public or private, must always be accessible to the relevant public authorities and stakeholders for verification and control purposes. 4) The discovery of AIS operating errors, unexpected or undesirable effects, security breaches, and data leaks must imperatively be reported to the relevant public authorities, stakeholders, and those affected by the situation. 5) In accordance with the transparency requirement for public decisions, the code for decision making algorithms used by public authorities must be accessible to all, with the exception of algorithms that present a high risk of serious danger if misused. 6) For public AIS that have a significant impact on the life of citizens, citizens should have the opportunity and skills to deliberate on the social parameters of these AIS, their objectives, and the limits of their use. 7) We must at all times be able to verify that AIS are doing what they were programmed for and what they are used for. 8) Any person using a service should know if a decision concerning them or affecting them was made by an AIS. 9) Any user of a service employing chatbots should be able to easily identify whether they are interacting with an AIS or a real person. 10) Artificial intelligence research should remain open and accessible to all.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018

· 2. A.I. must be transparent

We should be aware of how the technology works and what its rules are. We want not just intelligent machines but intelligible machines. Not artificial intelligence but symbiotic intelligence. The tech will know things about humans, but the humans must know about the machines. People should have an understanding of how the technology sees and analyzes the world. Ethics and design go hand in hand.

Published by Satya Nadella, CEO of Microsoft in 10 AI rules, Jun 28, 2016

· We will make AI systems as explainable as technically possible

1. Decisions and methodologies of AI systems which have a significant effect on individuals should be explainable to them, to the extent permitted by available technology 2. It should be possible to ascertain the key factors leading to any specific decision that could have a significant effect on an individual 3. In the above situation we will provide channels through which people can request such explanations

Published by Smart Dubai in Dubai's AI Principles, Jan 08, 2019