10. Responsibility, accountability and transparency

a. Build trust by ensuring that designers and operators are responsible and accountable for their systems, applications and algorithms, and to ensure that such systems, applications and algorithms operate in a transparent and fair manner. b. To make available externally visible and impartial avenues of redress for adverse individual or societal effects of an algorithmic decision system, and to designate a role to a person or office who is responsible for the timely remedy of such issues. c. Incorporate downstream measures and processes for users or stakeholders to verify how and when AI technology is being applied. d. To keep detailed records of design processes and decision making.
Principle: A compilation of existing AI ethical principles (Annex A), Jan 21, 2020

Published by Personal Data Protection Commission (PDPC), Singapore

Related Principles

2. Fairness and Equity

Deployers should have safeguards in place to ensure that algorithmic decisions do not further exacerbate or amplify existing discriminatory or unjust impacts across different demographics and the design, development, and deployment of AI systems should not result in unfair biasness or discrimination. An example of such safeguards would include human interventions and checks on the algorithms and its outputs. Deployers of AI systems should conduct regular testing of such systems to confirm if there is bias and where bias is confirmed, make the necessary adjustments to rectify imbalances to ensure equity. With the rapid developments in the AI space, AI systems are increasingly used to aid decision making. For example, AI systems are currently used to screen resumes in job application processes, predict the credit worthiness of consumers and provide agronomic advice to farmers. If not properly managed, an AI system’s outputs used to make decisions with significant impact on individuals could perpetuate existing discriminatory or unjust impacts to specific demographics. To mitigate discrimination, it is important that the design, development, and deployment of AI systems align with fairness and equity principles. In addition, the datasets used to train the AI systems should be diverse and representative. Appropriate measures should be taken to mitigate potential biases during data collection and pre processing, training, and inference. For example, thetraining and test dataset for an AI system used in the education sector should be adequately representative of the student population by including students of different genders and ethnicities.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

(Preamble)

Automated decision making algorithms are now used throughout industry and government, underpinning many processes from dynamic pricing to employment practices to criminal sentencing. Given that such algorithmically informed decisions have the potential for significant societal impact, the goal of this document is to help developers and product managers design and implement algorithmic systems in publicly accountable ways. Accountability in this context includes an obligation to report, explain, or justify algorithmic decision making as well as mitigate any negative social impacts or potential harms. We begin by outlining five equally important guiding principles that follow from this premise: Algorithms and the data that drive them are designed and created by people There is always a human ultimately responsible for decisions made or informed by an algorithm. "The algorithm did it" is not an acceptable excuse if algorithmic systems make mistakes or have undesired consequences, including from machine learning processes.

Published by Fairness, Accountability, and Transparency in Machine Learning (FAT/ML) in Principles for Accountable Algorithms, Jul 22, 2016 (unconfirmed)

4. Accountable and responsible

Organizations and individuals developing, deploying or operating AI systems should be held accountable for their ongoing proper functioning in line with the other principles. Human accountability and decision making over AI systems within an organization needs to be clearly identified, appropriately distributed and actively maintained throughout the system’s life cycle. An organizational culture around shared ethical responsibilities over the system must also be promoted. Where AI is used to make or assist with decisions, a public and accessible process for redress should be designed, developed, and implemented with input from a multidisciplinary team and affected stakeholders. Algorithmic systems should also be regularly peer reviewed or audited to ensure that unwanted biases have not inadvertently crept in over time. Why it matters Identifying and appropriately distributing accountability within an organization helps ensure continuous human oversight over the system is properly maintained. In addition to clear roles related to accountability, it is also important to promote an organizational culture around shared ethical responsibilities. This helps prevent gaps and avoids the situation where ethical considerations are always viewed as someone else’s responsibility. While our existing legal framework includes numerous traditional processes of redress related to governmental decision making, AI systems can present unique challenges to those traditional processes with their complexity. Input from a multidisciplinary team and affected stakeholders will help identify those issues in advance and design appropriate mechanisms to mitigate them. Regular peer review of AI systems is also important. Issues around bias may not be evident when AI systems are initially designed or developed, so it's important to consider this requirement throughout the lifecycle of the system.

Published by Government of Ontario, Canada in Principles for Ethical Use of AI [Beta], Sept 14, 2023

3 Ensure transparency, explainability and intelligibility

AI should be intelligible or understandable to developers, users and regulators. Two broad approaches to ensuring intelligibility are improving the transparency and explainability of AI technology. Transparency requires that sufficient information (described below) be published or documented before the design and deployment of an AI technology. Such information should facilitate meaningful public consultation and debate on how the AI technology is designed and how it should be used. Such information should continue to be published and documented regularly and in a timely manner after an AI technology is approved for use. Transparency will improve system quality and protect patient and public health safety. For instance, system evaluators require transparency in order to identify errors, and government regulators rely on transparency to conduct proper, effective oversight. It must be possible to audit an AI technology, including if something goes wrong. Transparency should include accurate information about the assumptions and limitations of the technology, operating protocols, the properties of the data (including methods of data collection, processing and labelling) and development of the algorithmic model. AI technologies should be explainable to the extent possible and according to the capacity of those to whom the explanation is directed. Data protection laws already create specific obligations of explainability for automated decision making. Those who might request or require an explanation should be well informed, and the educational information must be tailored to each population, including, for example, marginalized populations. Many AI technologies are complex, and the complexity might frustrate both the explainer and the person receiving the explanation. There is a possible trade off between full explainability of an algorithm (at the cost of accuracy) and improved accuracy (at the cost of explainability). All algorithms should be tested rigorously in the settings in which the technology will be used in order to ensure that it meets standards of safety and efficacy. The examination and validation should include the assumptions, operational protocols, data properties and output decisions of the AI technology. Tests and evaluations should be regular, transparent and of sufficient breadth to cover differences in the performance of the algorithm according to race, ethnicity, gender, age and other relevant human characteristics. There should be robust, independent oversight of such tests and evaluation to ensure that they are conducted safely and effectively. Health care institutions, health systems and public health agencies should regularly publish information about how decisions have been made for adoption of an AI technology and how the technology will be evaluated periodically, its uses, its known limitations and the role of decision making, which can facilitate external auditing and oversight.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021

4 Foster responsibility and accountability

Humans require clear, transparent specification of the tasks that systems can perform and the conditions under which they can achieve the desired level of performance; this helps to ensure that health care providers can use an AI technology responsibly. Although AI technologies perform specific tasks, it is the responsibility of human stakeholders to ensure that they can perform those tasks and that they are used under appropriate conditions. Responsibility can be assured by application of “human warranty”, which implies evaluation by patients and clinicians in the development and deployment of AI technologies. In human warranty, regulatory principles are applied upstream and downstream of the algorithm by establishing points of human supervision. The critical points of supervision are identified by discussions among professionals, patients and designers. The goal is to ensure that the algorithm remains on a machine learning development path that is medically effective, can be interrogated and is ethically responsible; it involves active partnership with patients and the public, such as meaningful public consultation and debate (101). Ultimately, such work should be validated by regulatory agencies or other supervisory authorities. When something does go wrong in application of an AI technology, there should be accountability. Appropriate mechanisms should be adopted to ensure questioning by and redress for individuals and groups adversely affected by algorithmically informed decisions. This should include access to prompt, effective remedies and redress from governments and companies that deploy AI technologies for health care. Redress should include compensation, rehabilitation, restitution, sanctions where necessary and a guarantee of non repetition. The use of AI technologies in medicine requires attribution of responsibility within complex systems in which responsibility is distributed among numerous agents. When medical decisions by AI technologies harm individuals, responsibility and accountability processes should clearly identify the relative roles of manufacturers and clinical users in the harm. This is an evolving challenge and remains unsettled in the laws of most countries. Institutions have not only legal liability but also a duty to assume responsibility for decisions made by the algorithms they use, even if it is not feasible to explain in detail how the algorithms produce their results. To avoid diffusion of responsibility, in which “everybody’s problem becomes nobody’s responsibility”, a faultless responsibility model (“collective responsibility”), in which all the agents involved in the development and deployment of an AI technology are held responsible, can encourage all actors to act with integrity and minimize harm. In such a model, the actual intentions of each agent (or actor) or their ability to control an outcome are not considered.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021