e)Ethical development for artificial intelligenceresponsible:

Ethics is considered to be the basis essential to accurately identify the framework of responsibilities in the use of these types ofsystems that make up Industry 4.0.
Principle: Principles for the Development of Use of Artificial Intelligence, July 5, 2023

Published by THE PRESIDENT OF THE REPUBLIC and THE CONGRESS OF THE REPUBLIC

Related Principles

1. Artificial intelligence should be developed for the common good and benefit of humanity.

The UK must seek to actively shape AI's development and utilisation, or risk passively acquiescing to its many likely consequences. A shared ethical AI framework is needed to give clarity as to how AI can best be used to benefit individuals and society. By establishing these principles, the UK can lead by example in the international community. We recommend that the Government convene a global summit of governments, academia and industry to establish international norms for the design, development, regulation and deployment of artificial intelligence. The prejudices of the past must not be unwittingly built into automated systems, and such systems must be carefully designed from the beginning, with input from as diverse a group of people as possible.

Published by House of Lords of United Kingdom, Select Committee on Artificial Intelligence in AI Code, Apr 16, 2018

4. Accountable and responsible

Organizations and individuals developing, deploying or operating AI systems should be held accountable for their ongoing proper functioning in line with the other principles. Human accountability and decision making over AI systems within an organization needs to be clearly identified, appropriately distributed and actively maintained throughout the system’s life cycle. An organizational culture around shared ethical responsibilities over the system must also be promoted. Where AI is used to make or assist with decisions, a public and accessible process for redress should be designed, developed, and implemented with input from a multidisciplinary team and affected stakeholders. Algorithmic systems should also be regularly peer reviewed or audited to ensure that unwanted biases have not inadvertently crept in over time. Why it matters Identifying and appropriately distributing accountability within an organization helps ensure continuous human oversight over the system is properly maintained. In addition to clear roles related to accountability, it is also important to promote an organizational culture around shared ethical responsibilities. This helps prevent gaps and avoids the situation where ethical considerations are always viewed as someone else’s responsibility. While our existing legal framework includes numerous traditional processes of redress related to governmental decision making, AI systems can present unique challenges to those traditional processes with their complexity. Input from a multidisciplinary team and affected stakeholders will help identify those issues in advance and design appropriate mechanisms to mitigate them. Regular peer review of AI systems is also important. Issues around bias may not be evident when AI systems are initially designed or developed, so it's important to consider this requirement throughout the lifecycle of the system.

Published by Government of Ontario, Canada in Principles for Ethical Use of AI [Beta], Sept 14, 2023

(Preamble)

New developments in Artificial Intelligence are transforming the world, from science and industry to government administration and finance. The rise of AI decision making also implicates fundamental rights of fairness, accountability, and transparency. Modern data analysis produces significant outcomes that have real life consequences for people in employment, housing, credit, commerce, and criminal sentencing. Many of these techniques are entirely opaque, leaving individuals unaware whether the decisions were accurate, fair, or even about them. We propose these Universal Guidelines to inform and improve the design and use of AI. The Guidelines are intended to maximize the benefits of AI, to minimize the risk, and to ensure the protection of human rights. These Guidelines should be incorporated into ethical standards, adopted in national law and international agreements, and built into the design of systems. We state clearly that the primary responsibility for AI systems must reside with those institutions that fund, develop, and deploy these systems.

Published by The Public Voice coalition, established by Electronic Privacy Information Center (EPIC) in Universal Guidelines for Artificial Intelligence, Oct 23, 2018

· Transparency and explainability

37. The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. 38. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. 39. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. 40. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. 41. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021

4 Foster responsibility and accountability

Humans require clear, transparent specification of the tasks that systems can perform and the conditions under which they can achieve the desired level of performance; this helps to ensure that health care providers can use an AI technology responsibly. Although AI technologies perform specific tasks, it is the responsibility of human stakeholders to ensure that they can perform those tasks and that they are used under appropriate conditions. Responsibility can be assured by application of “human warranty”, which implies evaluation by patients and clinicians in the development and deployment of AI technologies. In human warranty, regulatory principles are applied upstream and downstream of the algorithm by establishing points of human supervision. The critical points of supervision are identified by discussions among professionals, patients and designers. The goal is to ensure that the algorithm remains on a machine learning development path that is medically effective, can be interrogated and is ethically responsible; it involves active partnership with patients and the public, such as meaningful public consultation and debate (101). Ultimately, such work should be validated by regulatory agencies or other supervisory authorities. When something does go wrong in application of an AI technology, there should be accountability. Appropriate mechanisms should be adopted to ensure questioning by and redress for individuals and groups adversely affected by algorithmically informed decisions. This should include access to prompt, effective remedies and redress from governments and companies that deploy AI technologies for health care. Redress should include compensation, rehabilitation, restitution, sanctions where necessary and a guarantee of non repetition. The use of AI technologies in medicine requires attribution of responsibility within complex systems in which responsibility is distributed among numerous agents. When medical decisions by AI technologies harm individuals, responsibility and accountability processes should clearly identify the relative roles of manufacturers and clinical users in the harm. This is an evolving challenge and remains unsettled in the laws of most countries. Institutions have not only legal liability but also a duty to assume responsibility for decisions made by the algorithms they use, even if it is not feasible to explain in detail how the algorithms produce their results. To avoid diffusion of responsibility, in which “everybody’s problem becomes nobody’s responsibility”, a faultless responsibility model (“collective responsibility”), in which all the agents involved in the development and deployment of an AI technology are held responsible, can encourage all actors to act with integrity and minimize harm. In such a model, the actual intentions of each agent (or actor) or their ability to control an outcome are not considered.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021