5. Algorithmic justice

The development of artificial intelligence should avoid the harm caused to the public by algorithm design, and must clarify the algorithm motive and interpretability to overcome the unfair influence caused by algorithm design and data collection.
Principle: Shanghai Initiative for the Safe Development of Artificial Intelligence, Aug 30, 2019

Published by Shanghai Advisory Committee of Experts on Artificial Intelligence Industry Security

Related Principles

4. As part of an overall “ethics by design” approach, artificial intelligence systems should be designed and developed responsibly, by applying the principles of privacy by default and privacy by design, in particular by:

a. implementing technical and organizational measures and procedures – proportional to the type of system that is developed – to ensure that data subjects’ privacy and personal data are respected, both when determining the means of the processing and at the moment of data processing, b. assessing and documenting the expected impacts on individuals and society at the beginning of an artificial intelligence project and for relevant developments during its entire life cycle, and c. identifying specific requirements for ethical and fair use of the systems and for respecting human rights as part of the development and operations of any artificial intelligence system,

Published by 40th International Conference of Data Protection and Privacy Commissioners (ICDPPC) in Declaration On Ethics And Data Protection In Artifical Intelligence, Oct 23, 2018

· Plan and Design:

1 At the initial stages of setting out the purpose of the AI system, the design team shallcollaborate to pinpoint the objectives and how to reach them in an efficient and optimizedmanner. Planning the design of the AI system is an essential stage to translate the system’sintended goals and outcomes. During this phase, it is important to implement a fairness awaredesign that takes appropriate precautions across the AI system algorithm, processes, andmechanisms to prevent biases from having a discriminatory effect or lead to skewed andunwanted results or outcomes. 2 Fairness aware design should start at the beginning of the AI System Lifecycle with a collaborative effort from technical and non technical members to identify potential harm andbenefits, affected individuals and vulnerable groups and evaluate how they are impacted bythe results and whether the impact is justifiable given the general purpose of the AI system. 3 A fairness assessment of the AI system is crucial, and the metrics should be selected at this stage of the AI System Lifecycle. The metrics should be chosen based on the algorithm type (rule based, classification, regression, etc.), the effect of the decision (punitive, selective, etc.), and the harm and benefit on correctly and incorrectly predicted samples. 4 Sensitive personal data attributes relating to persons or groups which are systematically or historically disadvantaged should be identified and defined at this stage. The allowed threshold which makes the assessment fair or unfair should be defined. The fairness assessment metrics to be applied to sensitive features should be measured during future steps.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Prepare Input Data:

1 Following the best practice of responsible data acquisition, handling, classification, and management must be a priority to ensure that results and outcomes align with the AI system’s set goals and objectives. Effective data quality soundness and procurement begin by ensuring the integrity of the data source and data accuracy in representing all observations to avoid the systematic disadvantaging of under represented or advantaging over represented groups. The quantity and quality of the data sets should be sufficient and accurate to serve the purpose of the system. The sample size of the data collected or procured has a significant impact on the accuracy and fairness of the outputs of a trained model. 2 Sensitive personal data attributes which are defined in the plan and design phase should not be included in the model data not to feed the existing bias on them. Also, the proxies of the sensitive features should be analyzed and not included in the input data. In some cases, this may not be possible due to the accuracy or objective of the AI system. In this case, the justification of the usage of the sensitive personal data attributes or their proxies should be provided. 3 Causality based feature selection should be ensured. Selected features should be verified with business owners and non technical teams. 4 Automated decision support technologies present major risks of bias and unwanted application at the deployment phase, so it is critical to set out mechanisms to prevent harmful and discriminatory results at this phase.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Plan and Design:

1 When designing a transparent and trusted AI system, it is vital to ensure that stakeholders affected by AI systems are fully aware and informed of how outcomes are processed. They should further be given access to and an explanation of the rationale for decisions made by the AI technology in an understandable and contextual manner. Decisions should be traceable. AI system owners must define the level of transparency for different stakeholders on the technology based on data privacy, sensitivity, and authorization of the stakeholders. 2 The AI system should be designed to include an information section in the platform to give an overview of the AI model decisions as part of the overall transparency application of the technology. Information sharing as a sub principle should be adhered to with end users and stakeholders of the AI system upon request or open to the public, depending on the nature of the AI system and target market. The model should establish a process mechanism to log and address issues and complaints that arise to be able to resolve them in a transparent and explainable manner. Prepare Input Data: 1 The data sets and the processes that yield the AI system’s decision should be documented to the best possible standard to allow for traceability and an increase in transparency. 2 The data sets should be assessed in the context of their accuracy, suitability, validity, and source. This has a direct effect on the training and implementation of these systems since the criteria for the data’s organization, and structuring must be transparent and explainable in their acquisition and collection adhering to data privacy regulations and intellectual property standards and controls.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

5. Data Provenance

A description of the way in which the training data was collected should be maintained by the builders of the algorithms, accompanied by an exploration of the potential biases induced by the human or algorithmic data gathering process. Public scrutiny of the data provides maximum opportunity for corrections. However, concerns over privacy, protecting trade secrets, or revelation of analytics that might allow malicious actors to game the system can justify restricting access to qualified and authorized individuals.

Published by ACM US Public Policy Council (USACM) in Principles for Algorithmic Transparency and Accountability, Jan 12, 2017