2. Equip AI Systems With an “Ethical Black Box”

Full transparency in an AI system should be facilitated by the presence of a device that can record information about said system in the form of an “ethical black box” that not only contains relevant data to ensure transparency and accountability of a system, but also includes clear data and information on the ethical considerations built into said system. Applied to robots, the ethical black box would record all decisions, its bases for decision making, movements, and sensory data for its robot host. The data provided by the black box could also assist robots in explaining their actions in language human users can understand, fostering better relationships and improving the user experience. The read out of the ethical black box should be uncomplicated and fast.
Principle: Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017

Published by UNI Global Union

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· 2. Data Governance

The quality of the data sets used is paramount for the performance of the trained machine learning solutions. Even if the data is handled in a privacy preserving way, there are requirements that have to be fulfilled in order to have high quality AI. The datasets gathered inevitably contain biases, and one has to be able to prune these away before engaging in training. This may also be done in the training itself by requiring a symmetric behaviour over known issues in the training set. In addition, it must be ensured that the proper division of the data which is being set into training, as well as validation and testing of those sets, is carefully conducted in order to achieve a realistic picture of the performance of the AI system. It must particularly be ensured that anonymisation of the data is done in a way that enables the division of the data into sets to make sure that a certain data – for instance, images from same persons – do not end up into both the training and test sets, as this would disqualify the latter. The integrity of the data gathering has to be ensured. Feeding malicious data into the system may change the behaviour of the AI solutions. This is especially important for self learning systems. It is therefore advisable to always keep record of the data that is fed to the AI systems. When data is gathered from human behaviour, it may contain misjudgement, errors and mistakes. In large enough data sets these will be diluted since correct actions usually overrun the errors, yet a trace of thereof remains in the data. To trust the data gathering process, it must be ensured that such data will not be used against the individuals who provided the data. Instead, the findings of bias should be used to look forward and lead to better processes and instructions – improving our decisions making and strengthening our institutions.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· 8. Robustness

Trustworthy AI requires that algorithms are secure, reliable as well as robust enough to deal with errors or inconsistencies during the design, development, execution, deployment and use phase of the AI system, and to adequately cope with erroneous outcomes. Reliability & Reproducibility. Trustworthiness requires that the accuracy of results can be confirmed and reproduced by independent evaluation. However, the complexity, non determinism and opacity of many AI systems, together with sensitivity to training model building conditions, can make it difficult to reproduce results. Currently there is an increased awareness within the AI research community that reproducibility is a critical requirement in the field. Reproducibility is essential to guarantee that results are consistent across different situations, computational frameworks and input data. The lack of reproducibility can lead to unintended discrimination in AI decisions. Accuracy. Accuracy pertains to an AI’s confidence and ability to correctly classify information into the correct categories, or its ability to make correct predictions, recommendations, or decisions based on data or models. An explicit and well formed development and evaluation process can support, mitigate and correct unintended risks. Resilience to Attack. AI systems, like all software systems, can include vulnerabilities that can allow them to be exploited by adversaries. Hacking is an important case of intentional harm, by which the system will purposefully follow a different course of action than its original purpose. If an AI system is attacked, the data as well as system behaviour can be changed, leading the system to make different decisions, or causing the system to shut down altogether. Systems and or data can also become corrupted, by malicious intention or by exposure to unexpected situations. Poor governance, by which it becomes possible to intentionally or unintentionally tamper with the data, or grant access to the algorithms to unauthorised entities, can also result in discrimination, erroneous decisions, or even physical harm. Fall back plan. A secure AI has safeguards that enable a fall back plan in case of problems with the AI system. In some cases this can mean that the AI system switches from statistical to rule based procedure, in other cases it means that the system asks for a human operator before continuing the action.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· Transparency and explainability

The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in Draft Text of The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021

3 Ensure transparency, explainability and intelligibility

AI should be intelligible or understandable to developers, users and regulators. Two broad approaches to ensuring intelligibility are improving the transparency and explainability of AI technology. Transparency requires that sufficient information (described below) be published or documented before the design and deployment of an AI technology. Such information should facilitate meaningful public consultation and debate on how the AI technology is designed and how it should be used. Such information should continue to be published and documented regularly and in a timely manner after an AI technology is approved for use. Transparency will improve system quality and protect patient and public health safety. For instance, system evaluators require transparency in order to identify errors, and government regulators rely on transparency to conduct proper, effective oversight. It must be possible to audit an AI technology, including if something goes wrong. Transparency should include accurate information about the assumptions and limitations of the technology, operating protocols, the properties of the data (including methods of data collection, processing and labelling) and development of the algorithmic model. AI technologies should be explainable to the extent possible and according to the capacity of those to whom the explanation is directed. Data protection laws already create specific obligations of explainability for automated decision making. Those who might request or require an explanation should be well informed, and the educational information must be tailored to each population, including, for example, marginalized populations. Many AI technologies are complex, and the complexity might frustrate both the explainer and the person receiving the explanation. There is a possible trade off between full explainability of an algorithm (at the cost of accuracy) and improved accuracy (at the cost of explainability). All algorithms should be tested rigorously in the settings in which the technology will be used in order to ensure that it meets standards of safety and efficacy. The examination and validation should include the assumptions, operational protocols, data properties and output decisions of the AI technology. Tests and evaluations should be regular, transparent and of sufficient breadth to cover differences in the performance of the algorithm according to race, ethnicity, gender, age and other relevant human characteristics. There should be robust, independent oversight of such tests and evaluation to ensure that they are conducted safely and effectively. Health care institutions, health systems and public health agencies should regularly publish information about how decisions have been made for adoption of an AI technology and how the technology will be evaluated periodically, its uses, its known limitations and the role of decision making, which can facilitate external auditing and oversight.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021