Principle 2 – Privacy & Security

The privacy and security principle represents overarching values that require AI systems; throughout the AI System Lifecycle; to be built in a safe way that respects the privacy of the data collected as well as upholds the highest levels of data security processes and procedures to keep the data confidential preventing data and system breaches which could lead to reputational, psychological, financial, professional, or other types of harm. AI systems should be designed with mechanisms and controls that provide the possibility to govern and monitor their outcomes and progress throughout their lifecycle to ensure continuous monitoring within the privacy and security principles and protocols set in place.
Principle: AI Ethics Principles, Sept 14, 2022

Published by SDAIA

Related Principles

5. Privacy and Data Governance

AI systems should have proper mechanisms in place to ensure data privacy and protection and maintain and protect the quality and integrity of data throughout their entire lifecycle. Data protocols need to be set up to govern who can access data and when data can be accessed. Data privacy and protection should be respected and upheld during the design, development, and deployment of AI systems. The way data is collected, stored, generated, and deleted throughout the AI system lifecycle must comply with applicable data protection laws, data governance legislation, and ethical principles. Some data protection and privacy laws in ASEAN include Malaysia’s Personal Data Protection Act 2010, the Philippines’ Data Privacy Act of 2012, Singapore’s Personal Data Protection Act 2012, Thailand’s Personal Data Protection Act 2019, Indonesia’s Personal Data Protection Law 2022, and Vietnam’s Personal Data Protection Decree 2023. Organisations should be transparent about their data collection practices, including the types of data collected, how it is used, and who has access to it. Organisations should ensure that necessary consent is obtained from individuals before collecting, using, or disclosing personal data for AI development and deployment, or otherwise have appropriate legal basis to collect, use or disclose personal data without consent. Unnecessary or irrelevant data should not be gathered to prevent potential misuse. Data protection and governance frameworks should be set up and adhered to by developers and deployers of AI systems. These frameworks should also be periodically reviewed and updated in accordance with applicable privacy and data protection laws. For example, data protection impact assessments (DPIA) help organisations determine how data processing systems, procedures, or technologies affect individuals’ privacy and eliminate risks that might violate compliance7. However, it is important to note that DPIAs are much narrower in scope than an overall impact assessment for use of AI systems and are not sufficient as an AI risk assessment. Other components will need to be considered for a full assessment of risks associated with AI systems. Developers and deployers of AI systems should also incorporate a privacy by design principle when developing and deploying AI systems. Privacy by design is an approach that embeds privacy in every stage of the system development lifecycle. Data privacy is essential in gaining the public’s trust in technological advances. Another consideration is investing in privacy enhancing technologies to preserve privacy while allowing personal data to be used for innovation. Privacy enhancing technologies include, but are not limited to, differential privacy, where small changes are made to raw data to securely de identify inputs without having a significant impact on the results of the AI system, and zero knowledge proofs (ZKP), where ZKP hide the underlying data and answer simple questions about whether something is true or false without revealing additional information

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

Privacy protection and security

Throughout their lifecycle, AI systems should respect and uphold privacy rights and data protection, and ensure the security of data. This principle aims to ensure respect for privacy and data protection when using AI systems. This includes ensuring proper data governance, and management, for all data used and generated by the AI system throughout its lifecycle. For example, maintaining privacy through appropriate data anonymisation where used by AI systems. Further, the connection between data, and inferences drawn from that data by AI systems, should be sound and assessed in an ongoing manner. This principle also aims to ensure appropriate data and AI system security measures are in place. This includes the identification of potential security vulnerabilities, and assurance of resilience to adversarial attacks. Security measures should account for unintended applications of AI systems, and potential abuse risks, with appropriate mitigation measures.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· Prepare Input Data:

1 The exercise of data procurement, management, and organization should uphold the legal frameworks and standards of data privacy. Data privacy and security protect information from a wide range of threats. 2 The confidentiality of data ensures that information is accessible only to those who are authorized to access the information and that there are specific controls that manage the delegation of authority. 3 Designers and engineers of the AI system must exhibit the appropriate levels of integrity to safeguard the accuracy and completeness of information and processing methods to ensure that the privacy and security legal framework and standards are followed. They should also ensure that the availability and storage of data are protected through suitable security database systems. 4 All processed data should be classified to ensure that it receives the appropriate level of protection in accordance with its sensitivity or security classification and that AI system developers and owners are aware of the classification or sensitivity of the information they are handling and the associated requirements to keep it secure. All data shall be classified in terms of business requirements, criticality, and sensitivity in order to prevent unauthorized disclosure or modification. Data classification should be conducted in a contextual manner that does not result in the inference of personal information. Furthermore, de identification mechanisms should be employed based on data classification as well as requirements relating to data protection laws. 5 Data backups and archiving actions should be taken in this stage to align with business continuity, disaster recovery and risk mitigation policies.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Build and Validate:

1 Privacy and security by design should be implemented while building the AI system. The security mechanisms should include the protection of various architectural dimensions of an AI model from malicious attacks. The structure and modules of the AI system should be protected from unauthorized modification or damage to any of its components. 2 The AI system should be secure to ensure and maintain the integrity of the information it processes. This ensures that the system remains continuously functional and accessible to authorized users. It is crucial that the system safeguards confidential and private information, even under hostile or adversarial conditions. Furthermore, appropriate measures should be in place to ensure that AI systems with automated decision making capabilities uphold the necessary data privacy and security standards. 3 The AI System should be tested to ensure that the combination of available data does not reveal the sensitive data or break the anonymity of the observation. Deploy and Monitor: 1 After the deployment of the AI system, when its outcomes are realized, there must be continuous monitoring to ensure that the AI system is privacy preserving, safe and secure. The privacy impact assessment and risk management assessment should be continuously revisited to ensure that societal and ethical considerations are regularly evaluated. 2 AI System Owners should be accountable for the design and implementation of AI systems in such a way as to ensure that personal information is protected throughout the life cycle of the AI system. The components of the AI system should be updated based on continuous monitoring and privacy impact assessment.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Right to Privacy, and Data Protection

32. Privacy, a right essential to the protection of human dignity, human autonomy and human agency, must be respected, protected and promoted throughout the life cycle of AI systems. It is important that data for AI systems be collected, used, shared, archived and deleted in ways that are consistent with international law and in line with the values and principles set forth in this Recommendation, while respecting relevant national, regional and international legal frameworks. 33. Adequate data protection frameworks and governance mechanisms should be established in a multi stakeholder approach at the national or international level, protected by judicial systems, and ensured throughout the life cycle of AI systems. Data protection frameworks and any related mechanisms should take reference from international data protection principles and standards concerning the collection, use and disclosure of personal data and exercise of their rights by data subjects while ensuring a legitimate aim and a valid legal basis for the processing of personal data, including informed consent. 34. Algorithmic systems require adequate privacy impact assessments, which also include societal and ethical considerations of their use and an innovative use of the privacy by design approach. AI actors need to ensure that they are accountable for the design and implementation of AI systems in such a way as to ensure that personal information is protected throughout the life cycle of the AI system.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021