· Build and Validate:

1 When constructing AI systems, designers and engineers should prioritize building AI systems and algorithms that allow and facilitate decision making with an outlook of aligning with human rights and KSA’s cultural values. The automated decisions that result from AI systems should not act in a partial and standalone manner without considering broader human rights and cultural values in their final outcomes and results. 2 Designers and Engineers should enable AI systems with the appropriate parameters and algorithm training to attain outcomes that advance humanity
Principle: AI Ethics Principles, Sept 14, 2022

Published by SDAIA

Related Principles

2. Fairness and Equity

Deployers should have safeguards in place to ensure that algorithmic decisions do not further exacerbate or amplify existing discriminatory or unjust impacts across different demographics and the design, development, and deployment of AI systems should not result in unfair biasness or discrimination. An example of such safeguards would include human interventions and checks on the algorithms and its outputs. Deployers of AI systems should conduct regular testing of such systems to confirm if there is bias and where bias is confirmed, make the necessary adjustments to rectify imbalances to ensure equity. With the rapid developments in the AI space, AI systems are increasingly used to aid decision making. For example, AI systems are currently used to screen resumes in job application processes, predict the credit worthiness of consumers and provide agronomic advice to farmers. If not properly managed, an AI system’s outputs used to make decisions with significant impact on individuals could perpetuate existing discriminatory or unjust impacts to specific demographics. To mitigate discrimination, it is important that the design, development, and deployment of AI systems align with fairness and equity principles. In addition, the datasets used to train the AI systems should be diverse and representative. Appropriate measures should be taken to mitigate potential biases during data collection and pre processing, training, and inference. For example, thetraining and test dataset for an AI system used in the education sector should be adequately representative of the student population by including students of different genders and ethnicities.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

Human centred values

Throughout their lifecycle, AI systems should respect human rights, diversity, and the autonomy of individuals. This principle aims to ensure that AI systems are aligned with human values. Machines should serve humans, and not the other way around. AI systems should enable an equitable and democratic society by respecting, protecting and promoting human rights, enabling diversity, respecting human freedom and the autonomy of individuals, and protecting the environment. Human rights risks need to be carefully considered, as AI systems can equally enable and hamper such fundamental rights. It’s permissible to interfere with certain human rights where it’s reasonable, necessary and proportionate. All people interacting with AI systems should be able to keep full and effective control over themselves. AI systems should not undermine the democratic process, and should not undertake actions that threaten individual autonomy, like deception, unfair manipulation, unjustified surveillance, and failing to maintain alignment between a disclosed purpose and true action. AI systems should be designed to augment, complement and empower human cognitive, social and cultural skills. Organisations designing, developing, deploying or operating AI systems should ideally hire staff from diverse backgrounds, cultures and disciplines to ensure a wide range of perspectives, and to minimise the risk of missing important considerations only noticeable by some stakeholders.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· 5. The Principle of Explicability: “Operate transparently”

Transparency is key to building and maintaining citizen’s trust in the developers of AI systems and AI systems themselves. Both technological and business model transparency matter from an ethical standpoint. Technological transparency implies that AI systems be auditable, comprehensible and intelligible by human beings at varying levels of comprehension and expertise. Business model transparency means that human beings are knowingly informed of the intention of developers and technology implementers of AI systems. Explicability is a precondition for achieving informed consent from individuals interacting with AI systems and in order to ensure that the principle of explicability and non maleficence are achieved the requirement of informed consent should be sought. Explicability also requires accountability measures be put in place. Individuals and groups may request evidence of the baseline parameters and instructions given as inputs for AI decision making (the discovery or prediction sought by an AI system or the factors involved in the discovery or prediction made) by the organisations and developers of an AI system, the technology implementers, or another party in the supply chain.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· Plan and Design:

1 It is essential to design and build a model that is based on the fundamental human rights and cultural values and principles that are applied within and on the AI system’s decisions, processes, and functionalities. 2 The designers of the AI model should define how the AI system will align with fundamental human rights and KSA’s cultural values while designing, building, and testing the technology; as well as how the AI system and its outcomes will strive to achieve and positively contribute to augment and complement human skills and capabilities.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Build and Validate:

1 To develop a sound and functional AI system that is both reliable and safe, the AI system’s technical construct should be accompanied by a comprehensive methodology to test the quality of the predictive data based systems and models according to standard policies and protocols. 2 To ensure the technical robustness of an AI system rigorous testing, validation, and re assessment as well as the integration of adequate mechanisms of oversight and controls into its development is required. System integration test sign off should be done with relevant stakeholders to minimize risks and liability. 3 Automated AI systems involving scenarios where decisions are understood to have an impact that is irreversible or difficult to reverse or may involve life and death decisions should trigger human oversight and final determination. Furthermore, AI systems should not be used for social scoring or mass surveillance purposes.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022