· Plan and Design:

1 Designing and developing an AI system that can withstand the uncertainty, instability, and volatility that it might encounter is crucial. 2 Planning to set out a robust and reliable AI system that works with different sets of inputs and situations is essential to prevent unintended harm and mitigate risks of system failures when positioned against unknown and unforeseen events. 3 Establishing a set of standards and protocols for assessing the reliability of an AI system is necessary to secure the safety of the system’s algorithm and data output. It is essential to keep a sustainable technical outlay and outcomes generated from the system to maintain the public’s trust and confidence in the AI system. 4 The documentation standards are essential to track the evolution of the system, foresee possible risks and fix vulnerabilities. 5 All critical decision points in the system design should be subject to sign off by relevant stakeholders to minimize risks and make stakeholders accountable for the decisions.
Principle: AI Ethics Principles, Sept 14, 2022

Published by SDAIA

Related Principles

· 8. Robustness

Trustworthy AI requires that algorithms are secure, reliable as well as robust enough to deal with errors or inconsistencies during the design, development, execution, deployment and use phase of the AI system, and to adequately cope with erroneous outcomes. Reliability & Reproducibility. Trustworthiness requires that the accuracy of results can be confirmed and reproduced by independent evaluation. However, the complexity, non determinism and opacity of many AI systems, together with sensitivity to training model building conditions, can make it difficult to reproduce results. Currently there is an increased awareness within the AI research community that reproducibility is a critical requirement in the field. Reproducibility is essential to guarantee that results are consistent across different situations, computational frameworks and input data. The lack of reproducibility can lead to unintended discrimination in AI decisions. Accuracy. Accuracy pertains to an AI’s confidence and ability to correctly classify information into the correct categories, or its ability to make correct predictions, recommendations, or decisions based on data or models. An explicit and well formed development and evaluation process can support, mitigate and correct unintended risks. Resilience to Attack. AI systems, like all software systems, can include vulnerabilities that can allow them to be exploited by adversaries. Hacking is an important case of intentional harm, by which the system will purposefully follow a different course of action than its original purpose. If an AI system is attacked, the data as well as system behaviour can be changed, leading the system to make different decisions, or causing the system to shut down altogether. Systems and or data can also become corrupted, by malicious intention or by exposure to unexpected situations. Poor governance, by which it becomes possible to intentionally or unintentionally tamper with the data, or grant access to the algorithms to unauthorised entities, can also result in discrimination, erroneous decisions, or even physical harm. Fall back plan. A secure AI has safeguards that enable a fall back plan in case of problems with the AI system. In some cases this can mean that the AI system switches from statistical to rule based procedure, in other cases it means that the system asks for a human operator before continuing the action.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· 9. Safety

Safety is about ensuring that the system will indeed do what it is supposed to do, without harming users (human physical integrity), resources or the environment. It includes minimizing unintended consequences and errors in the operation of the system. Processes to clarify and assess potential risks associated with the use of AI products and services should be put in place. Moreover, formal mechanisms are needed to measure and guide the adaptability of AI systems.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

· Build and Validate:

1 Privacy and security by design should be implemented while building the AI system. The security mechanisms should include the protection of various architectural dimensions of an AI model from malicious attacks. The structure and modules of the AI system should be protected from unauthorized modification or damage to any of its components. 2 The AI system should be secure to ensure and maintain the integrity of the information it processes. This ensures that the system remains continuously functional and accessible to authorized users. It is crucial that the system safeguards confidential and private information, even under hostile or adversarial conditions. Furthermore, appropriate measures should be in place to ensure that AI systems with automated decision making capabilities uphold the necessary data privacy and security standards. 3 The AI System should be tested to ensure that the combination of available data does not reveal the sensitive data or break the anonymity of the observation. Deploy and Monitor: 1 After the deployment of the AI system, when its outcomes are realized, there must be continuous monitoring to ensure that the AI system is privacy preserving, safe and secure. The privacy impact assessment and risk management assessment should be continuously revisited to ensure that societal and ethical considerations are regularly evaluated. 2 AI System Owners should be accountable for the design and implementation of AI systems in such a way as to ensure that personal information is protected throughout the life cycle of the AI system. The components of the AI system should be updated based on continuous monitoring and privacy impact assessment.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

· Plan and Design:

1 When designing a transparent and trusted AI system, it is vital to ensure that stakeholders affected by AI systems are fully aware and informed of how outcomes are processed. They should further be given access to and an explanation of the rationale for decisions made by the AI technology in an understandable and contextual manner. Decisions should be traceable. AI system owners must define the level of transparency for different stakeholders on the technology based on data privacy, sensitivity, and authorization of the stakeholders. 2 The AI system should be designed to include an information section in the platform to give an overview of the AI model decisions as part of the overall transparency application of the technology. Information sharing as a sub principle should be adhered to with end users and stakeholders of the AI system upon request or open to the public, depending on the nature of the AI system and target market. The model should establish a process mechanism to log and address issues and complaints that arise to be able to resolve them in a transparent and explainable manner. Prepare Input Data: 1 The data sets and the processes that yield the AI system’s decision should be documented to the best possible standard to allow for traceability and an increase in transparency. 2 The data sets should be assessed in the context of their accuracy, suitability, validity, and source. This has a direct effect on the training and implementation of these systems since the criteria for the data’s organization, and structuring must be transparent and explainable in their acquisition and collection adhering to data privacy regulations and intellectual property standards and controls.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

Plan and Design:

1 This step is crucial to design or procure an AI System in an accountable and responsible manner. The ethical responsibility and liability for the outcomes of the AI system should be attributable to stakeholders who are responsible for certain actions in the AI System Lifecycle. It is essential to set a robust governance structure that defines the authorization and responsibility areas of the internal and external stakeholders without leaving any areas of uncertainty to achieve this principle. The design approach of the AI system should respect human rights, and fundamental freedoms as well as the national laws and cultural values of the kingdom. 2 Organizations can put in place additional instruments such as impact assessments, risk mitigation frameworks, audit and due diligence mechanisms, redress, and disaster recovery plans. 3 It is essential to build and design a human controlled AI system where decisions on the processes and functionality of the technology are monitored and executed, and are susceptible to intervention from authorized users. Human governance and oversight establish the necessary control and levels of autonomy through set mechanisms.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022