· Be Diverse and Inclusive

The development of AI should reflect diversity and inclusiveness, and be designed to benefit as many people as possible, especially those who would otherwise be easily neglected or underrepresented in AI applications.
Principle: Beijing AI Principles, May 25, 2019

Published by Beijing Academy of Artificial Intelligence (BAAI); Peking University; Tsinghua University; Institute of Automation, Chinese Academy of Sciences; Institute of Computing Technology, Chinese Academy of Sciences; Artifical Intelligence Industry Innovation Strategy Alliance (AITISA); etc.

Related Principles

Fairness

Throughout their lifecycle, AI systems should be inclusive and accessible, and should not involve or result in unfair discrimination against individuals, communities or groups. This principle aims to ensure that AI systems are fair and that they enable inclusion throughout their entire lifecycle. AI systems should be user centric and designed in a way that allows all people interacting with it to access the related products or services. This includes both appropriate consultation with stakeholders, who may be affected by the AI system throughout its lifecycle, and ensuring people receive equitable access and treatment. This is particularly important given concerns about the potential for AI to perpetuate societal injustices and have a disparate impact on vulnerable and underrepresented groups including, but not limited to, groups relating to age, disability, race, sex, intersex status, gender identity and sexual orientation. Measures should be taken to ensure the AI produced decisions are compliant with anti‐discrimination laws.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· Shared benefits

AI should benefit as many people as possible. Access to AI technologies should be open to all countries. The wealth created by AI should benefit workers and society as a whole, as well as the innovators.

Published by Centre for International Governance Innovation (CIGI), Canada in Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

VI. Societal and environmental well being

For AI to be trustworthy, its impact on the environment and other sentient beings should be taken into account. Ideally, all humans, including future generations, should benefit from biodiversity and a habitable environment. Sustainability and ecological responsibility of AI systems should hence be encouraged. The same applies to AI solutions addressing areas of global concern, such as for instance the UN Sustainable Development Goals. Furthermore, the impact of AI systems should be considered not only from an individual perspective, but also from the perspective of society as a whole. The use of AI systems should be given careful consideration particularly in situations relating to the democratic process, including opinion formation, political decision making or electoral contexts. Moreover, AI’s social impact should be considered. While AI systems can be used to enhance social skills, they can equally contribute to their deterioration.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

· ③ Respect for Diversity

Throughout every stage of AI development and utilization, the diversity and representativeness of the AI users should be ensured, and bias and discrimination based on personal characteristics, such as gender, age, disability, region, race, religion, and nationality, should be minimized. Commercialized AI systems should be generally applicable to all individuals. The socially disadvantaged and vulnerable should be guaranteed access to AI technologies and services. Efforts should be made to ensure equal distribution of AI benefits to all people rather than to certain groups.

Published by The Ministry of Science and ICT (MSIT) and the Korea Information Society Development Institute (KISDI) in National AI Ethical Guidelines, Dec 23, 2020

5 Ensure inclusiveness and equity

Inclusiveness requires that AI used in health care is designed to encourage the widest possible appropriate, equitable use and access, irrespective of age, gender, income, ability or other characteristics. Institutions (e.g. companies, regulatory agencies, health systems) should hire employees from diverse backgrounds, cultures and disciplines to develop, monitor and deploy AI. AI technologies should be designed by and evaluated with the active participation of those who are required to use the system or will be affected by it, including providers and patients, and such participants should be sufficiently diverse. Participation can also be improved by adopting open source software or making source codes publicly available. AI technology – like any other technology – should be shared as widely as possible. AI technologies should be available not only in HIC and for use in contexts and for needs that apply to high income settings but they should also be adaptable to the types of devices, telecommunications infrastructure and data transfer capacity in LMIC. AI developers and vendors should also consider the diversity of languages, ability and forms of communication around the world to avoid barriers to use. Industry and governments should strive to ensure that the “digital divide” within and between countries is not widened and ensure equitable access to novel AI technologies. AI technologies should not be biased. Bias is a threat to inclusiveness and equity because it represents a departure, often arbitrary, from equal treatment. For example, a system designed to diagnose cancerous skin lesions that is trained with data on one skin colour may not generate accurate results for patients with a different skin colour, increasing the risk to their health. Unintended biases that may emerge with AI should be avoided or identified and mitigated. AI developers should be aware of the possible biases in their design, implementation and use and the potential harm that biases can cause to individuals and society. These parties also have a duty to address potential bias and avoid introducing or exacerbating health care disparities, including when testing or deploying new AI technologies in vulnerable populations. AI developers should ensure that AI data, and especially training data, do not include sampling bias and are therefore accurate, complete and diverse. If a particular racial or ethnic minority (or other group) is underrepresented in a dataset, oversampling of that group relative to its population size may be necessary to ensure that an AI technology achieves the same quality of results in that population as in better represented groups. AI technologies should minimize inevitable power disparities between providers and patients or between companies that create and deploy AI technologies and those that use or rely on them. Public sector agencies should have control over the data collectedby private health care providers, and their shared responsibilities should be defined and respected. Everyone – patients, health care providers and health care systems – should be able to benefit from an AI technology and not just the technology providers. AI technologies should be accompanied by means to provide patients with knowledge and skills to better understand their health status and to communicate effectively with health care providers. Future health literacy should include an element of information technology literacy. The effects of use of AI technologies must be monitored and evaluated, including disproportionate effects on specific groups of people when they mirror or exacerbate existing forms of bias and discrimination. Special provision should be made to protect the rights and welfare of vulnerable persons, with mechanisms for redress if such bias and discrimination emerges or is alleged.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021