· 9) Responsibility

Designers and builders of advanced AI systems are stakeholders in the moral implications of their use, misuse, and actions, with a responsibility and opportunity to shape those implications.
Principle: Asilomar AI Principles, Jan 3-8, 2017

Published by Future of Life Institute (FLI), Beneficial AI 2017

Related Principles

3. Principle 3 — Accountability

Issue: How can we assure that designers, manufacturers, owners, and operators of A IS are responsible and accountable? [Candidate Recommendations] To best address issues of responsibility and accountability: 1. Legislatures courts should clarify issues of responsibility, culpability, liability, and accountability for A IS where possible during development and deployment (so that manufacturers and users understand their rights and obligations). 2. Designers and developers of A IS should remain aware of, and take into account when relevant, the diversity of existing cultural norms among the groups of users of these A IS. 3. Multi stakeholder ecosystems should be developed to help create norms (which can mature to best practices and laws) where they do not exist because A IS oriented technology and their impacts are too new (including representatives of civil society, law enforcement, insurers, manufacturers, engineers, lawyers, etc.). 4. Systems for registration and record keeping should be created so that it is always possible to find out who is legally responsible for a particular A IS. Manufacturers operators owners of A IS should register key, high level parameters, including: • Intended use • Training data training environment (if applicable) • Sensors real world data sources • Algorithms • Process graphs • Model features (at various levels) • User interfaces • Actuators outputs • Optimization goal loss function reward function

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems in Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017

· 1.1 Responsible Design and Deployment

We recognize our responsibility to integrate principles into the design of AI technologies, beyond compliance with existing laws. While the potential benefits to people and society are amazing, AI researchers, subject matter experts, and stakeholders should and do spend a great deal of time working to ensure the responsible design and deployment of AI systems. Highly autonomous AI systems must be designed consistent with international conventions that preserve human dignity, rights, and freedoms. As an industry, it is our responsibility to recognize potentials for use and misuse, the implications of such actions, and the responsibility and opportunity to take steps to avoid the reasonably predictable misuse of this technology by committing to ethics by design.

Published by Information Technology Industry Council (ITI) in AI Policy Principles, Oct 24, 2017

3. Responsibility:

those who design and deploy the use of AI must proceed with responsibility and transparency;

Published by The Pontifical Academy for Life, Microsoft, IBM, FAO, the Italia Government in Rome Call for AI Ethics, Feb 28, 2020

Principle 7 – Accountability & Responsibility

The accountability and responsibility principle holds designers, vendors, procurers, developers, owners and assessors of AI systems and the technology itself ethically responsible and liable for the decisions and actions that may result in potential risk and negative effects on individuals and communities. Human oversight, governance, and proper management should be demonstrated across the entire AI System Lifecycle to ensure that proper mechanisms are in place to avoid harm and misuse of this technology. AI systems should never lead to people being deceived or unjustifiably impaired in their freedom of choice. The designers, developers, and people who implement the AI system should be identifiable and assume responsibility and accountability for any potential damage the technology has on individuals or communities, even if the adverse impact is unintended. The liable parties should take necessary preventive actions as well as set risk assessment and mitigation strategy to minimize the harm due to the AI system. The accountability and responsibility principle is closely related to the fairness principle. The parties responsible for the AI system should ensure that the fairness of the system is maintained and sustained through control mechanisms. All parties involved in the AI System Lifecycle should consider and action these values in their decisions and execution.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

(Preamble)

New developments in Artificial Intelligence are transforming the world, from science and industry to government administration and finance. The rise of AI decision making also implicates fundamental rights of fairness, accountability, and transparency. Modern data analysis produces significant outcomes that have real life consequences for people in employment, housing, credit, commerce, and criminal sentencing. Many of these techniques are entirely opaque, leaving individuals unaware whether the decisions were accurate, fair, or even about them. We propose these Universal Guidelines to inform and improve the design and use of AI. The Guidelines are intended to maximize the benefits of AI, to minimize the risk, and to ensure the protection of human rights. These Guidelines should be incorporated into ethical standards, adopted in national law and international agreements, and built into the design of systems. We state clearly that the primary responsibility for AI systems must reside with those institutions that fund, develop, and deploy these systems.

Published by The Public Voice coalition, established by Electronic Privacy Information Center (EPIC) in Universal Guidelines for Artificial Intelligence, Oct 23, 2018