3. Principle 3 — Accountability

Issue: How can we assure that designers, manufacturers, owners, and operators of A IS are responsible and accountable? [Candidate Recommendations] To best address issues of responsibility and accountability: 1. Legislatures courts should clarify issues of responsibility, culpability, liability, and accountability for A IS where possible during development and deployment (so that manufacturers and users understand their rights and obligations). 2. Designers and developers of A IS should remain aware of, and take into account when relevant, the diversity of existing cultural norms among the groups of users of these A IS. 3. Multi stakeholder ecosystems should be developed to help create norms (which can mature to best practices and laws) where they do not exist because A IS oriented technology and their impacts are too new (including representatives of civil society, law enforcement, insurers, manufacturers, engineers, lawyers, etc.). 4. Systems for registration and record keeping should be created so that it is always possible to find out who is legally responsible for a particular A IS. Manufacturers operators owners of A IS should register key, high level parameters, including: • Intended use • Training data training environment (if applicable) • Sensors real world data sources • Algorithms • Process graphs • Model features (at various levels) • User interfaces • Actuators outputs • Optimization goal loss function reward function
Principle: Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems

Related Principles

4. Human centricity

AI systems should respect human centred values and pursue benefits for human society, including human beings’ well being, nutrition, happiness, etc. It is key to ensure that people benefit from AI design, development, and deployment while being protected from potential harms. AI systems should be used to promote human well being and ensure benefit for all. Especially in instances where AI systems are used to make decisions about humans or aid them, it is imperative that these systems are designed with human benefit in mind and do not take advantage of vulnerable individuals. Human centricity should be incorporated throughout the AI system lifecycle, starting from the design to development and deployment. Actions must be taken to understand the way users interact with the AI system, how it is perceived, and if there are any negative outcomes arising from its outputs. One example of how deployers can do this is to test the AI system with a small group of internal users from varied backgrounds and demographics and incorporate their feedback in the AI system. AI systems should not be used for malicious purposes or to sway or deceive users into making decisions that are not beneficial to them or society. In this regard, developers and deployers (if developing or designing inhouse) should also ensure that dark patterns are avoided. Dark patterns refer to the use of certain design techniques to manipulate users and trick them into making decisions that they would otherwise not have made. An example of a dark pattern is employing the use of default options that do not consider the end user’s interests, such as for data sharing and tracking of the user’s other online activities. As an extension of human centricity as a principle, it is also important to ensure that the adoption of AI systems and their deployment at scale do not unduly disrupt labour and job prospects without proper assessment. Deployers are encouraged to take up impact assessments to ensure a systematic and stakeholder based review and consider how jobs can be redesigned to incorporate use of AI. Personal Data Protection Commission of Singapore’s (PDPC) Guide on Job Redesign in the Age of AI6 provides useful guidance to assist organisations in considering the impact of AI on its employees, and how work tasks can be redesigned to help employees embrace AI and move towards higher value tasks.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

4. Principle 4 — Transparency

Issue: How can we ensure that A IS are transparent? [Candidate Recommendation] Develop new standards* that describe measurable, testable levels of transparency, so that systems can be objectively assessed and levels of compliance determined. For designers, such standards will provide a guide for self assessing transparency during development and suggest mechanisms for improving transparency. (The mechanisms by which transparency is provided will vary significantly, for instance 1) for users of care or domestic robots, a why did you do that button which, when pressed, causes the robot to explain the action it just took, 2) for validation or certification agencies, the algorithms underlying the A IS and how they have been verified, and 3) for accident investigators, secure storage of sensor and internal state data, comparable to a flight data recorder or black box.) *Note that IEEE Standards Working Group P7001™ has been set up in response to this recommendation.

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems in Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017

Ensuring Accountability

Principle: Legal accountability has to be ensured when human agency is replaced by decisions of AI agents. Recommendations: Ensure legal certainty: Governments should ensure legal certainty on how existing laws and policies apply to algorithmic decision making and the use of autonomous systems to ensure a predictable legal environment. This includes working with experts from all disciplines to identify potential gaps and run legal scenarios. Similarly, those designing and using AI should be in compliance with existing legal frameworks. Put users first: Policymakers need to ensure that any laws applicable to AI systems and their use put users’ interests at the center. This must include the ability for users to challenge autonomous decisions that adversely affect their interests. Assign liability up front: Governments working with all stakeholders need to make some difficult decisions now about who will be liable in the event that something goes wrong with an AI system, and how any harm suffered will be remedied.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

4. Accountable and responsible

Organizations and individuals developing, deploying or operating AI systems should be held accountable for their ongoing proper functioning in line with the other principles. Human accountability and decision making over AI systems within an organization needs to be clearly identified, appropriately distributed and actively maintained throughout the system’s life cycle. An organizational culture around shared ethical responsibilities over the system must also be promoted. Where AI is used to make or assist with decisions, a public and accessible process for redress should be designed, developed, and implemented with input from a multidisciplinary team and affected stakeholders. Algorithmic systems should also be regularly peer reviewed or audited to ensure that unwanted biases have not inadvertently crept in over time. Why it matters Identifying and appropriately distributing accountability within an organization helps ensure continuous human oversight over the system is properly maintained. In addition to clear roles related to accountability, it is also important to promote an organizational culture around shared ethical responsibilities. This helps prevent gaps and avoids the situation where ethical considerations are always viewed as someone else’s responsibility. While our existing legal framework includes numerous traditional processes of redress related to governmental decision making, AI systems can present unique challenges to those traditional processes with their complexity. Input from a multidisciplinary team and affected stakeholders will help identify those issues in advance and design appropriate mechanisms to mitigate them. Regular peer review of AI systems is also important. Issues around bias may not be evident when AI systems are initially designed or developed, so it's important to consider this requirement throughout the lifecycle of the system.

Published by Government of Ontario, Canada in Principles for Ethical Use of AI [Beta], Sept 14, 2023

4 Foster responsibility and accountability

Humans require clear, transparent specification of the tasks that systems can perform and the conditions under which they can achieve the desired level of performance; this helps to ensure that health care providers can use an AI technology responsibly. Although AI technologies perform specific tasks, it is the responsibility of human stakeholders to ensure that they can perform those tasks and that they are used under appropriate conditions. Responsibility can be assured by application of “human warranty”, which implies evaluation by patients and clinicians in the development and deployment of AI technologies. In human warranty, regulatory principles are applied upstream and downstream of the algorithm by establishing points of human supervision. The critical points of supervision are identified by discussions among professionals, patients and designers. The goal is to ensure that the algorithm remains on a machine learning development path that is medically effective, can be interrogated and is ethically responsible; it involves active partnership with patients and the public, such as meaningful public consultation and debate (101). Ultimately, such work should be validated by regulatory agencies or other supervisory authorities. When something does go wrong in application of an AI technology, there should be accountability. Appropriate mechanisms should be adopted to ensure questioning by and redress for individuals and groups adversely affected by algorithmically informed decisions. This should include access to prompt, effective remedies and redress from governments and companies that deploy AI technologies for health care. Redress should include compensation, rehabilitation, restitution, sanctions where necessary and a guarantee of non repetition. The use of AI technologies in medicine requires attribution of responsibility within complex systems in which responsibility is distributed among numerous agents. When medical decisions by AI technologies harm individuals, responsibility and accountability processes should clearly identify the relative roles of manufacturers and clinical users in the harm. This is an evolving challenge and remains unsettled in the laws of most countries. Institutions have not only legal liability but also a duty to assume responsibility for decisions made by the algorithms they use, even if it is not feasible to explain in detail how the algorithms produce their results. To avoid diffusion of responsibility, in which “everybody’s problem becomes nobody’s responsibility”, a faultless responsibility model (“collective responsibility”), in which all the agents involved in the development and deployment of an AI technology are held responsible, can encourage all actors to act with integrity and minimize harm. In such a model, the actual intentions of each agent (or actor) or their ability to control an outcome are not considered.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021