· 7. Respect for Privacy

Privacy and data protection must be guaranteed at all stages of the life cycle of the AI system. This includes all data provided by the user, but also all information generated about the user over the course of his or her interactions with the AI system (e.g. outputs that the AI system generated for specific users, how users responded to particular recommendations, etc.). Digital records of human behaviour can reveal highly sensitive data, not only in terms of preferences, but also regarding sexual orientation, age, gender, religious and political views. The person in control of such information could use this to his her advantage. Organisations must be mindful of how data is used and might impact users, and ensure full compliance with the GDPR as well as other applicable regulation dealing with privacy and data protection.
Principle: Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence

Related Principles

· (3) Privacy

In society premised on AI, it is possible to estimate each person’s political position, economic situation, hobbies preferences, etc. with high accuracy from data on the data subject’s personal behavior. This means, when utilizing AI, that more careful treatment of personal data is necessary than simply utilizing personal information. To ensure that people are not suffered disadvantages from unexpected sharing or utilization of personal data through the internet for instance, each stakeholder must handle personal data based on the following principles. Companies or government should not infringe individual person’s freedom, dignity and equality in utilization of personal data with AI technologies. AI that uses personal data should have a mechanism that ensures accuracy and legitimacy and enable the person herself himself to be substantially involved in the management of her his privacy data. As a result, when using the AI, people can provide personal data without concerns and effectively benefit from the data they provide. Personal data must be properly protected according to its importance and sensitivity. Personal data varies from those unjust use of which would be likely to greatly affect rights and benefits of individuals (Typically thought and creed, medical history, criminal record, etc.) to those that are semi public in social life. Taking this into consideration, we have to pay enough attention to the balance between the use and protection of personal data based on the common understanding of society and the cultural background.

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI (Draft), Dec 27, 2018

III. Privacy and Data Governance

Privacy and data protection must be guaranteed at all stages of the AI system’s life cycle. Digital records of human behaviour may allow AI systems to infer not only individuals’ preferences, age and gender but also their sexual orientation, religious or political views. To allow individuals to trust the data processing, it must be ensured that they have full control over their own data, and that data concerning them will not be used to harm or discriminate against them. In addition to safeguarding privacy and personal data, requirements must be fulfilled to ensure high quality AI systems. The quality of the data sets used is paramount to the performance of AI systems. When data is gathered, it may reflect socially constructed biases, or contain inaccuracies, errors and mistakes. This needs to be addressed prior to training an AI system with any given data set. In addition, the integrity of the data must be ensured. Processes and data sets used must be tested and documented at each step such as planning, training, testing and deployment. This should also apply to AI systems that were not developed in house but acquired elsewhere. Finally, the access to data must be adequately governed and controlled.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

(h) Data protection and privacy

In an age of ubiquitous and massive collection of data through digital communication technologies, the right to protection of personal information and the right to respect for privacy are crucially challenged. Both physical AI robots as part of the Internet of Things, as well as AI softbots that operate via the World Wide Web must comply with data protection regulations and not collect and spread data or be run on sets of data for whose use and dissemination no informed consent has been given. ‘Autonomous’ systems must not interfere with the right to private life which comprises the right to be free from technologies that influence personal development and opinions, the right to establish and develop relationships with other human beings, and the right to be free from surveillance. Also in this regard, exact criteria should be defined and mechanisms established that ensure ethical development and ethically correct application of ‘autonomous’ systems. In light of concerns with regard to the implications of ‘autonomous’ systems on private life and privacy, consideration may be given to the ongoing debate about the introduction of two new rights: the right to meaningful human contact and the right to not be profiled, measured, analysed, coached or nudged.

Published by European Group on Ethics in Science and New Technologies, European Commission in Ethical principles and democratic prerequisites, Mar 9, 2018

6. Principle of privacy

Users and data providers should take into consideration that the utilization of AI systems or AI services will not infringe on the privacy of users’ or others. [Main points to discuss] A) Respect for the privacy of others With consideration of social contexts and reasonable expectations of people in the utilization of AI, users may be expected to respect the privacy of others in the utilization of AI. In addition, users may be expected to consider measures to be taken against privacy infringement caused by AI in advance. B) Respect for the privacy of others in the collection, analysis, provision, etc. of personal data Users and data providers may be expected to respect the privacy of others in the collection, analysis, provision, etc. of personal data used for learning or other methods of AI. C) Consideration for the privacy, etc. of the subject of profiling which uses AI In the case of profiling by using AI in fields where the judgments of AI might have significant influences on individual rights and interests, such as the fields of personnel evaluation, recruitment, and financing, AI service providers and business users may be expected to pay due consideration to the privacy, etc. of the subject of profiling. D) Attention to the infringement of the privacy of users’ or others Consumer users may be expected to pay attention not to give information that is highly confidential (including information on others as well as information on users’ themselves) to AI carelessly, by excessively empathizing with AI such as pet robots, or by other causes. E) Prevention of personal data leakage AI service providers, business users, and data providers may be expected to take appropriate measures so that personal data should not be provided by the judgments of AI to third parties without consent of the person.

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in Draft AI Utilization Principles, Jul 17, 2018

· Transparency and explainability

The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in Draft Text of The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021