Transparency

To the greatest extent feasible, the technical basis of the particular decisions made by an A IS should be discoverable.
Principle: Ethical Aspects of Autonomous and Intelligent Systems, Jun 24, 2019

Published by IEEE

Related Principles

IV. Transparency

The traceability of AI systems should be ensured; it is important to log and document both the decisions made by the systems, as well as the entire process (including a description of data gathering and labelling, and a description of the algorithm used) that yielded the decisions. Linked to this, explainability of the algorithmic decision making process, adapted to the persons involved, should be provided to the extent possible. Ongoing research to develop explainability mechanisms should be pursued. In addition, explanations of the degree to which an AI system influences and shapes the organisational decision making process, design choices of the system, as well as the rationale for deploying it, should be available (hence ensuring not just data and system transparency, but also business model transparency). Finally, it is important to adequately communicate the AI system’s capabilities and limitations to the different stakeholders involved in a manner appropriate to the use case at hand. Moreover, AI systems should be identifiable as such, ensuring that users know they are interacting with an AI system and which persons are responsible for it.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

Accountability

A IS should be designed and operated in a manner that permits production of an unambiguous rationale for the decisions made by the system.

Published by IEEE in Ethical Aspects of Autonomous and Intelligent Systems, Jun 24, 2019

1. Right to Transparency.

All individuals have the right to know the basis of an AI decision that concerns them. This includes access to the factors, the logic, and techniques that produced the outcome. [Explanatory Memorandum] The elements of the Transparency Principle can be found in several modern privacy laws, including the US Privacy Act, the EU Data Protection Directive, the GDPR, and the Council of Europe Convention 108. The aim of this principle is to enable independent accountability for automated decisions, with a primary emphasis on the right of the individual to know the basis of an adverse determination. In practical terms, it may not be possible for an individual to interpret the basis of a particular decision, but this does not obviate the need to ensure that such an explanation is possible.

Published by The Public Voice coalition, established by Electronic Privacy Information Center (EPIC) in Universal Guidelines for Artificial Intelligence, Oct 23, 2018

2. Right to Human Determination.

All individuals have the right to a final determination made by a person. [Explanatory Memorandum] The Right to a Human Determination reaffirms that individuals and not machines are responsible for automated decision making. In many instances, such as the operation of an autonomous vehicle, it would not be possible or practical to insert a human decision prior to an automated decision. But the aim remains to ensure accountability. Thus where an automated system fails, this principle should be understood as a requirement that a human assessment of the outcome be made.

Published by The Public Voice coalition, established by Electronic Privacy Information Center (EPIC) in Universal Guidelines for Artificial Intelligence, Oct 23, 2018

1. Demand That AI Systems Are Transparent

A transparent artificial intelligence system is one in which it is possible to discover how, and why, the system made a decision, or in the case of a robot, acted the way it did. In particular: A. We stress that open source code is neither necessary nor sufficient for transparency – clarity cannot be obfuscated by complexity. B. For users, transparency is important because it builds trust in, and understanding of, the system, by providing a simple way for the user to understand what the system is doing and why. C. For validation and certification of an AI system, transparency is important because it exposes the system’s processes for scrutiny. D. If accidents occur, the AI will need to be transparent and accountable to an accident investigator, so the internal process that led to the accident can be understood. E. Workers must have the right to demand transparency in the decisions and outcomes of AI systems as well as the underlying algorithms (see principle 4 below). This includes the right to appeal decisions made by AI algorithms, and having it reviewed by a human being. F. Workers must be consulted on AI systems’ implementation, development and deployment. G. Following an accident, judges, juries, lawyers, and expert witnesses involved in the trial process require transparency and accountability to inform evidence and decision making. The principle of transparency is a prerequisite for ascertaining that the remaining principles are observed. See Principle 2 below for operational solution.

Published by UNI Global Union in Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017