A Accountability

Accountability is central to the definition of good practice in corporate governance. It implies that there should always be a line of responsibility for business actions to establish who has to answer for the consequences. AI systems introduce an additional strand of complexity: who is responsible for the outcome of the decision making process of an artificial agent? It is difficult to provide a univocal answer and a rich debate has flourished on this topic. Although the question of responsibility remain largely unanswered, a valuable approach would be for each of the parties involved as if they were ultimately responsible.
Principle: IBE interactive framework of fundamental values and principles for the use of Artificial Intelligence (AI) in business, Jan 11, 2018

Published by Institute of Business Ethics (IBE)

Related Principles

Transparency and explainability

There should be transparency and responsible disclosure to ensure people know when they are being significantly impacted by an AI system, and can find out when an AI system is engaging with them. This principle aims to ensure responsible disclosure when an AI system is significantly impacting on a person’s life. The definition of the threshold for ‘significant impact’ will depend on the context, impact and application of the AI system in question. Achieving transparency in AI systems through responsible disclosure is important to each stakeholder group for the following reasons for users, what the system is doing and why for creators, including those undertaking the validation and certification of AI, the systems’ processes and input data for those deploying and operating the system, to understand processes and input data for an accident investigator, if accidents occur for regulators in the context of investigations for those in the legal process, to inform evidence and decision‐making for the public, to build confidence in the technology Responsible disclosures should be provided in a timely manner, and provide reasonable justifications for AI systems outcomes. This includes information that helps people understand outcomes, like key factors used in decision making. This principle also aims to ensure people have the ability to find out when an AI system is engaging with them (regardless of the level of impact), and are able to obtain a reasonable disclosure regarding the AI system.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

Transparency Principle

The elements of the Transparency Principle can be found in several modern privacy laws, including the US Privacy Act, the EU Data Protection Directive, the GDPR, and the Council of Europe Convention 108. The aim of this principle is to enable independent accountability for automated decisions, with a primary emphasis on the right of the individual to know the basis of an adverse determination. In practical terms, it may not be possible for an individual to interpret the basis of a particular decision, but this does not obviate the need to ensure that such an explanation is possible.

Published by Center for AI and Digital Policy in Universal Guidelines for AI, Oct, 2018

3.1 Explainability and verifiability

One of the basic characteristics of human consciousness is that it perceives the environment, seeks answers to questions. i.e. explanations of why and how something is or is not. That trait influenced the evolution of man and the development of science, and therefore artificial intelligence. Man's need to understand and make things clear to him found its foothold in this principle. Clarity in the context of these Guidelines means that all processes: development, testing, commissioning, system monitoring and shutdown must be transparent. The purpose and capabilities of the artificial intelligence system itself must be explainable, especially the decisions (recommendations) which it brings (to the extent that it is expedient) to all who are affected by the System (directly or indirectly). lf certain results of the System's work cannot be explained, it is necessary to mark them as a system with a "black box" model. Verifiability is a complementary element of this principle, which ensures that the System can check in all processes, ie. during the entire life cycle. Verifiability includes the actions and procedures of checking artificial intelligence systems during testing and implementation, as well as checking the short term and long term impact that such a system has on humans.

Published by Republic of Serbia in ETHICAL GUIDELINES FOR THE DEVELOPMENT, APPLICATION AND USE OF RELIABLE AND RESPONSIBLE ARTIFICIAL INTELLIGENCE, Febrary, 2023

1. Demand That AI Systems Are Transparent

A transparent artificial intelligence system is one in which it is possible to discover how, and why, the system made a decision, or in the case of a robot, acted the way it did. In particular: A. We stress that open source code is neither necessary nor sufficient for transparency – clarity cannot be obfuscated by complexity. B. For users, transparency is important because it builds trust in, and understanding of, the system, by providing a simple way for the user to understand what the system is doing and why. C. For validation and certification of an AI system, transparency is important because it exposes the system’s processes for scrutiny. D. If accidents occur, the AI will need to be transparent and accountable to an accident investigator, so the internal process that led to the accident can be understood. E. Workers must have the right to demand transparency in the decisions and outcomes of AI systems as well as the underlying algorithms (see principle 4 below). This includes the right to appeal decisions made by AI algorithms, and having it reviewed by a human being. F. Workers must be consulted on AI systems’ implementation, development and deployment. G. Following an accident, judges, juries, lawyers, and expert witnesses involved in the trial process require transparency and accountability to inform evidence and decision making. The principle of transparency is a prerequisite for ascertaining that the remaining principles are observed. See Principle 2 below for operational solution.

Published by UNI Global Union in Top 10 Principles For Ethical Artificial Intelligence, Dec 11, 2017

4 Foster responsibility and accountability

Humans require clear, transparent specification of the tasks that systems can perform and the conditions under which they can achieve the desired level of performance; this helps to ensure that health care providers can use an AI technology responsibly. Although AI technologies perform specific tasks, it is the responsibility of human stakeholders to ensure that they can perform those tasks and that they are used under appropriate conditions. Responsibility can be assured by application of “human warranty”, which implies evaluation by patients and clinicians in the development and deployment of AI technologies. In human warranty, regulatory principles are applied upstream and downstream of the algorithm by establishing points of human supervision. The critical points of supervision are identified by discussions among professionals, patients and designers. The goal is to ensure that the algorithm remains on a machine learning development path that is medically effective, can be interrogated and is ethically responsible; it involves active partnership with patients and the public, such as meaningful public consultation and debate (101). Ultimately, such work should be validated by regulatory agencies or other supervisory authorities. When something does go wrong in application of an AI technology, there should be accountability. Appropriate mechanisms should be adopted to ensure questioning by and redress for individuals and groups adversely affected by algorithmically informed decisions. This should include access to prompt, effective remedies and redress from governments and companies that deploy AI technologies for health care. Redress should include compensation, rehabilitation, restitution, sanctions where necessary and a guarantee of non repetition. The use of AI technologies in medicine requires attribution of responsibility within complex systems in which responsibility is distributed among numerous agents. When medical decisions by AI technologies harm individuals, responsibility and accountability processes should clearly identify the relative roles of manufacturers and clinical users in the harm. This is an evolving challenge and remains unsettled in the laws of most countries. Institutions have not only legal liability but also a duty to assume responsibility for decisions made by the algorithms they use, even if it is not feasible to explain in detail how the algorithms produce their results. To avoid diffusion of responsibility, in which “everybody’s problem becomes nobody’s responsibility”, a faultless responsibility model (“collective responsibility”), in which all the agents involved in the development and deployment of an AI technology are held responsible, can encourage all actors to act with integrity and minimize harm. In such a model, the actual intentions of each agent (or actor) or their ability to control an outcome are not considered.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021