Sustainability

Designers and users of AI systems must remain aware that these technologies have transformative effects on individuals and society. They must thereby proceed with a continuous sensitivity to real world impacts. They must also keep in mind that the technical sustainability of these systems depends on their safety: their accuracy, reliability, security, and robustness.
Principle: The FAST Track Principles, Jun 10, 2019

Published by The Alan Turing Institute

Related Principles

4. Human centricity

AI systems should respect human centred values and pursue benefits for human society, including human beings’ well being, nutrition, happiness, etc. It is key to ensure that people benefit from AI design, development, and deployment while being protected from potential harms. AI systems should be used to promote human well being and ensure benefit for all. Especially in instances where AI systems are used to make decisions about humans or aid them, it is imperative that these systems are designed with human benefit in mind and do not take advantage of vulnerable individuals. Human centricity should be incorporated throughout the AI system lifecycle, starting from the design to development and deployment. Actions must be taken to understand the way users interact with the AI system, how it is perceived, and if there are any negative outcomes arising from its outputs. One example of how deployers can do this is to test the AI system with a small group of internal users from varied backgrounds and demographics and incorporate their feedback in the AI system. AI systems should not be used for malicious purposes or to sway or deceive users into making decisions that are not beneficial to them or society. In this regard, developers and deployers (if developing or designing inhouse) should also ensure that dark patterns are avoided. Dark patterns refer to the use of certain design techniques to manipulate users and trick them into making decisions that they would otherwise not have made. An example of a dark pattern is employing the use of default options that do not consider the end user’s interests, such as for data sharing and tracking of the user’s other online activities. As an extension of human centricity as a principle, it is also important to ensure that the adoption of AI systems and their deployment at scale do not unduly disrupt labour and job prospects without proper assessment. Deployers are encouraged to take up impact assessments to ensure a systematic and stakeholder based review and consider how jobs can be redesigned to incorporate use of AI. Personal Data Protection Commission of Singapore’s (PDPC) Guide on Job Redesign in the Age of AI6 provides useful guidance to assist organisations in considering the impact of AI on its employees, and how work tasks can be redesigned to help employees embrace AI and move towards higher value tasks.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

2. Transparency

For cognitive systems to fulfill their world changing potential, it is vital that people have confidence in their recommendations, judgments and uses. Therefore, the IBM company will make clear: When and for what purposes AI is being applied in the cognitive solutions we develop and deploy. The major sources of data and expertise that inform the insights of cognitive solutions, as well as the methods used to train those systems and solutions. The principle that clients own their own business models and intellectual property and that they can use AI and cognitive systems to enhance the advantages they have built, often through years of experience. We will work with our clients to protect their data and insights, and will encourage our clients, partners and industry colleagues to adopt similar practices.

Published by IBM in Principles for the Cognitive Era, Jan 17, 2017

· Plan and Design:

1 AI systems have a significant impact on communities and the ecosystems that they live in; hence AI System Owners should have a high sense of awareness that these technologies may have disruptive and transformative effects on society and the environment. The design of AI systems should be approached in an ethical and sensitive manner in line with the values of prevention of harm to both human beings and the environment. 2 When planning and designing AI systems, due consideration should be given to preventing and helping address social and environmental issues in a way that will ensure sustainable social and ecological responsibility.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

6 Promote artificial intelligence that is responsive and sustainable

Responsiveness requires that designers, developers and users continuously, systematically and transparently examine an AI technology to determine whether it is responding adequately, appropriately and according to communicated expectations and requirements in the context in which it is used. Thus, identification of a health need requires that institutions and governments respond to that need and its context with appropriate technologies with the aim of achieving the public interest in health protection and promotion. When an AI technology is ineffective or engenders dissatisfaction, the duty to be responsive requires an institutional process to resolve the problem, which may include terminating use of the technology. Responsiveness also requires that AI technologies be consistent with wider efforts to promote health systems and environmental and workplace sustainability. AI technologies should be introduced only if they can be fully integrated and sustained in the health care system. Too often, especially in under resourced health systems, new technologies are not used or are not repaired or updated, thereby wasting scare resources that could have been invested in proven interventions. Furthermore, AI systems should be designed to minimize their ecological footprints and increase energy efficiency, so that use of AI is consistent with society’s efforts to reduce the impact of human beings on the earth’s environment, ecosystems and climate. Sustainability also requires governments and companies to address anticipated disruptions to the workplace, including training of health care workers to adapt to use of AI and potential job losses due to the use of automated systems for routine health care functions and administrative tasks.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021