Reliability and safety

Throughout their lifecycle, AI systems should reliably operate in accordance with their intended purpose. This principle aims to ensure that AI systems reliably operate in accordance with their intended purpose throughout their lifecycle. This includes ensuring AI systems are reliable, accurate and reproducible as appropriate. AI systems should not pose unreasonable safety risks, and should adopt safety measures that are proportionate to the magnitude of potential risks. AI systems should be monitored and tested to ensure they continue to meet their intended purpose, and any identified problems should be addressed with ongoing risk management as appropriate. Responsibility should be clearly and appropriately identified, for ensuring that an AI system is robust and safe.
Principle: AI Ethics Principles, Nov 7, 2019

Published by Department of Industry, Innovation and Science, Australian Government

Related Principles

3. Security and Safety

AI systems should be safe and sufficiently secure against malicious attacks. Safety refers to ensuring the safety of developers, deployers, and users of AI systems by conducting impact or risk assessments and ensuring that known risks have been identified and mitigated. A risk prevention approach should be adopted, and precautions should be put in place so that humans can intervene to prevent harm, or the system can safely disengage itself in the event an AI system makes unsafe decisions autonomous vehicles that cause injury to pedestrians are an illustration of this. Ensuring that AI systems are safe is essential to fostering public trust in AI. Safety of the public and the users of AI systems should be of utmost priority in the decision making process of AI systems and risks should be assessed and mitigated to the best extent possible. Before deploying AI systems, deployers should conduct risk assessments and relevant testing or certification and implement the appropriate level of human intervention to prevent harm when unsafe decisions take place. The risks, limitations, and safeguards of the use of AI should be made known to the user. For example, in AI enabled autonomous vehicles, developers and deployers should put in place mechanisms for the human driver to easily resume manual driving whenever they wish. Security refers to ensuring the cybersecurity of AI systems, which includes mechanisms against malicious attacks specific to AI such as data poisoning, model inversion, the tampering of datasets, byzantine attacks in federated learning5, as well as other attacks designed to reverse engineer personal data used to train the AI. Deployers of AI systems should work with developers to put in place technical security measures like robust authentication mechanisms and encryption. Just like any other software, deployers should also implement safeguards to protect AI systems against cyberattacks, data security attacks, and other digital security risks. These may include ensuring regular software updates to AI systems and proper access management for critical or sensitive systems. Deployers should also develop incident response plans to safeguard AI systems from the above attacks. It is also important for deployers to make a minimum list of security testing (e.g. vulnerability assessment and penetration testing) and other applicable security testing tools. Some other important considerations also include: a. Business continuity plan b. Disaster recovery plan c. Zero day attacks d. IoT devices

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

II. Technical robustness and safety

Trustworthy AI requires algorithms to be secure, reliable and robust enough to deal with errors or inconsistencies during all life cycle phases of the AI system, and to adequately cope with erroneous outcomes. AI systems need to be reliable, secure enough to be resilient against both overt attacks and more subtle attempts to manipulate data or algorithms themselves, and they must ensure a fall back plan in case of problems. Their decisions must be accurate, or at least correctly reflect their level of accuracy, and their outcomes should be reproducible. In addition, AI systems should integrate safety and security by design mechanisms to ensure that they are verifiably safe at every step, taking at heart the physical and mental safety of all concerned. This includes the minimisation and where possible the reversibility of unintended consequences or errors in the system’s operation. Processes to clarify and assess potential risks associated with the use of AI systems, across various application areas, should be put in place.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

3. Safe

Data enhanced technologies like AI and ML systems must function in a safe and secure way throughout their life cycles and potential risks should be continually assessed and managed. Designers, policy makers and developers should embed appropriate safeguards throughout the life cycle of the system to ensure it is working as intended. This would include mechanisms related to system testing, piloting, scaling and human intervention as well as alternative processes in case a complete halt of system operations is required. The mechanisms must be appropriate to the context and determined before deployment but should be iterated upon throughout the system’s life cycle. Why it matters Automated algorithmic decisions can reflect and amplify undesirable patterns in the data they are trained on. As well, issues with the system can arise that only become apparent after the system is deployed. Therefore, despite our best efforts unexpected outcomes and impacts need to be considered. Accordingly, systems will require ongoing monitoring and mitigation planning to ensure that if the algorithmic system is making decisions that are not intended, a human can adapt, correct or improve the system.

Published by Government of Ontario, Canada in Principles for Ethical Use of AI [Beta], Sept 14, 2023

Principle 5 – Reliability & Safety

The reliability and safety principle ensures that the AI system adheres to the set specifications and that the AI system behaves exactly as its designers intended and anticipated. Reliability is a measure of consistency and provides confidence in how robust a system is. It is a measure of dependability with which it operationally conforms to its intended functionality and the outcomes it produces. On the other hand, safety is a measure of how the AI system does not pose a risk of harm or danger to society and individuals. As an illustration, AI systems such as autonomous vehicles can pose a risk to people’s lives if living organisms are not properly recognized, certain scenarios are not trained for or if the system malfunctions. A reliable working system should be safe by not posing a danger to society and should have built in mechanisms to prevent harm. The risk mitigation framework is closely related to this principle. Potential risks and unintended harms should be minimized in this aspect. The predictive model should be monitored and controlled in a periodic and continuous manner to check if its operations and functionality are aligned with the designed structure and frameworks in place. The AI system should be technically sound, robust, and developed to prevent malicious usage to exploit its data and outcomes to harm entities, individuals or communities. A continuous implementation continuous development approach is essential to ensure reliability.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

Fifth principle: Reliability

AI enabled systems must be demonstrably reliable, robust and secure. The MOD’s AI enabled systems must be suitably reliable; they must fulfil their intended design and deployment criteria and perform as expected, within acceptable performance parameters. Those parameters must be regularly reviewed and tested for reliability to be assured on an ongoing basis, particularly as AI enabled systems learn and evolve over time, or are deployed in new contexts. Given Defence’s unique operational context and the challenges of the information environment, this principle also requires AI enabled systems to be secure, and a robust approach to cybersecurity, data protection and privacy. MOD personnel working with or alongside AI enabled systems can build trust in those systems by ensuring that they have a suitable level of understanding of the performance and parameters of those systems, as articulated in the principle of understanding.

Published by The Ministry of Defence (MOD), United Kingdom in Ethical Principles for AI in Defence, Jun 15, 2022