6. The norms of delegation of decisions to AI systems shall be codified through thoughtful, inclusive dialogue with civil society.

In most instances, the codification of the acceptable uses of AI remains the domain of the technical elite with legislators, courts and governments struggling to catch up to realities on the ground, while ordinary citizens remain mostly excluded. Principle 6 is intended to ensure that standards and codes of practice result from more inclusive dialogue and are grounded in truly broad consensus.
Principle: Principles for the Governance of AI, Oct 3, 2017 (unconfirmed)

Published by The Future Society, Science, Law and Society (SLS) Initiative

Related Principles

· (2) Education

In a society premised on AI, we have to eliminate disparities, divisions, or socially weak people. Therefore, policy makers and managers of the enterprises involved in AI must have an accurate understanding of AI, the knowledge for proper use of AI in society and AI ethics, taking into account the complexity of AI and the possibility that AI can be misused intentionally. The AI user should understand the outline of AI and be educated to utilize it properly because AI is much more complicated than the already developed conventional tools. On the other hand, from the viewpoint of AI’s contributions to society, it is important for the developers of AI to learn about the social sciences, business models, and ethics, including normative awareness of norms and wide range of liberal arts not to mention the basis possibly generated by AI. From the above point of view, it is necessary to establish an educational environment that provides AI literacy according to the following principles, equally to every person. In order to get rid of disparity between people having a good knowledge about AI technology and those being weak in it, opportunities for education such as AI literacy are widely provided in early childhood education and primary and secondary education. The opportunities of learning about AI should be provided for the elderly people as well as workforce generation. Our society needs an education scheme by which anyone should be able to learn AI, mathematics, and data science beyond the boundaries of literature and science. Literacy education provides the following contents: 1) Data used by AI are usually contaminated by bias, 2) AI is easy to generate unwanted bias in its use, and 3) The issues of impartiality, fairness, and privacy protection which are inherent to actual use of AI. In a society in which AI is widely used, the educational environment is expected to change from the current unilateral and uniform teaching style to one that matches the interests and skill level of each individual person. Therefore, the society probably shares the view that the education system will change constantly to the above mentioned education style, regardless of the success experience in the educational system of the past. In education, it is especially important to avoid dropouts. For this, it is desirable to introduce an interactive educational environment which fully utilizes AI technologies and allows students to work together to feel a kind accomplishment. In order to develop such an educational environment, it is desirable that companies and citizens work on their own initiative, not to burden administrations and schools (teachers).

Published by Cabinet Office, Government of Japan in Social Principles of Human-centric AI (Draft), Dec 27, 2018

(Conclusion)

Taking into consideration the principles above, the 40th International Conference of Data Protection and Privacy Commissioners calls for common governance principles on artificial intelligence to be established, fostering concerted international efforts in this field, in order to ensure that its development and use take place in accordance with ethics and human values, and respect human dignity. These common governance principles must be able to tackle the challenges raised by the rapid evolutions of artificial intelligence technologies, on the basis of a multi stakeholder approach in order to address all cross sectoral issues at stake. They must take place at an international level since the development of artificial intelligence is a trans border phenomenon and may affect all humanity. The Conference should be involved in this international effort, working with and supporting general and sectoral authorities in other fields such as competition, market and consumer regulation.

Published by 40th International Conference of Data Protection and Privacy Commissioners (ICDPPC) in Declaration On Ethics And Data Protection In Artifical Intelligence, Oct 23, 2018

PREAMBLE

For the first time in human history, it is possible to create autonomous systems capable of performing complex tasks of which natural intelligence alone was thought capable: processing large quantities of information, calculating and predicting, learning and adapting responses to changing situations, and recognizing and classifying objects. Given the immaterial nature of these tasks, and by analogy with human intelligence, we designate these wide ranging systems under the general name of artificial intelligence. Artificial intelligence constitutes a major form of scientific and technological progress, which can generate considerable social benefits by improving living conditions and health, facilitating justice, creating wealth, bolstering public safety, and mitigating the impact of human activities on the environment and the climate. Intelligent machines are not limited to performing better calculations than human beings; they can also interact with sentient beings, keep them company and take care of them. However, the development of artificial intelligence does pose major ethical challenges and social risks. Indeed, intelligent machines can restrict the choices of individuals and groups, lower living standards, disrupt the organization of labor and the job market, influence politics, clash with fundamental rights, exacerbate social and economic inequalities, and affect ecosystems, the climate and the environment. Although scientific progress, and living in a society, always carry a risk, it is up to the citizens to determine the moral and political ends that give meaning to the risks encountered in an uncertain world. The lower the risks of its deployment, the greater the benefits of artificial intelligence will be. The first danger of artificial intelligence development consists in giving the illusion that we can master the future through calculations. Reducing society to a series of numbers and ruling it through algorithmic procedures is an old pipe dream that still drives human ambitions. But when it comes to human affairs, tomorrow rarely resembles today, and numbers cannot determine what has moral value, nor what is socially desirable. The principles of the current declaration are like points on a moral compass that will help guide the development of artificial intelligence towards morally and socially desirable ends. They also offer an ethical framework that promotes internationally recognized human rights in the fields affected by the rollout of artificial intelligence. Taken as a whole, the principles articulated lay the foundation for cultivating social trust towards artificially intelligent systems. The principles of the current declaration rest on the common belief that human beings seek to grow as social beings endowed with sensations, thoughts and feelings, and strive to fulfill their potential by freely exercising their emotional, moral and intellectual capacities. It is incumbent on the various public and private stakeholders and policymakers at the local, national and international level to ensure that the development and deployment of artificial intelligence are compatible with the protection of fundamental human capacities and goals, and contribute toward their fuller realization. With this goal in mind, one must interpret the proposed principles in a coherent manner, while taking into account the specific social, cultural, political and legal contexts of their application.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018

· Transparency and explainability

The transparency and explainability of AI systems are often essential preconditions to ensure the respect, protection and promotion of human rights, fundamental freedoms and ethical principles. Transparency is necessary for relevant national and international liability regimes to work effectively. A lack of transparency could also undermine the possibility of effectively challenging decisions based on outcomes produced by AI systems and may thereby infringe the right to a fair trial and effective remedy, and limits the areas in which these systems can be legally used. While efforts need to be made to increase transparency and explainability of AI systems, including those with extra territorial impact, throughout their life cycle to support democratic governance, the level of transparency and explainability should always be appropriate to the context and impact, as there may be a need to balance between transparency and explainability and other principles such as privacy, safety and security. People should be fully informed when a decision is informed by or is made on the basis of AI algorithms, including when it affects their safety or human rights, and in those circumstances should have the opportunity to request explanatory information from the relevant AI actor or public sector institutions. In addition, individuals should be able to access the reasons for a decision affecting their rights and freedoms, and have the option of making submissions to a designated staff member of the private sector company or public sector institution able to review and correct the decision. AI actors should inform users when a product or service is provided directly or with the assistance of AI systems in a proper and timely manner. From a socio technical lens, greater transparency contributes to more peaceful, just, democratic and inclusive societies. It allows for public scrutiny that can decrease corruption and discrimination, and can also help detect and prevent negative impacts on human rights. Transparency aims at providing appropriate information to the respective addressees to enable their understanding and foster trust. Specific to the AI system, transparency can enable people to understand how each stage of an AI system is put in place, appropriate to the context and sensitivity of the AI system. It may also include insight into factors that affect a specific prediction or decision, and whether or not appropriate assurances (such as safety or fairness measures) are in place. In cases of serious threats of adverse human rights impacts, transparency may also require the sharing of code or datasets. Explainability refers to making intelligible and providing insight into the outcome of AI systems. The explainability of AI systems also refers to the understandability of the input, output and the functioning of each algorithmic building block and how it contributes to the outcome of the systems. Thus, explainability is closely related to transparency, as outcomes and ub processes leading to outcomes should aim to be understandable and traceable, appropriate to the context. AI actors should commit to ensuring that the algorithms developed are explainable. In the case of AI applications that impact the end user in a way that is not temporary, easily reversible or otherwise low risk, it should be ensured that the meaningful explanation is provided with any decision that resulted in the action taken in order for the outcome to be considered transparent. Transparency and explainability relate closely to adequate responsibility and accountability measures, as well as to the trustworthiness of AI systems.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in Draft Text of The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021

· Multi stakeholder and adaptive governance and collaboration

International law and national sovereignty must be respected in the use of data. That means that States, complying with international law, can regulate the data generated within or passing through their territories, and take measures towards effective regulation of data, including data protection, based on respect for the right to privacy in accordance with international law and other human rights norms and standards. Participation of different stakeholders throughout the AI system life cycle is necessary for inclusive approaches to AI governance, enabling the benefits to be shared by all, and to contribute to sustainable development. Stakeholders include but are not limited to governments, intergovernmental organizations, the technical community, civil society, researchers and academia, media, education, policy makers, private sector companies, human rights institutions and equality bodies, anti discrimination monitoring bodies, and groups for youth and children. The adoption of open standards and interoperability to facilitate collaboration should be in place. Measures should be adopted to take into account shifts in technologies, the emergence of new groups of stakeholders, and to allow for meaningful participation by marginalized groups, communities and individuals and, where relevant, in the case of Indigenous Peoples, respect for the self governance of their data.

Published by The United Nations Educational, Scientific and Cultural Organization (UNESCO) in Draft Text of The Recommendation on the Ethics of Artificial Intelligence, Nov 24, 2021