1. Awareness

Owners, designers, builders, users, and other stakeholders of analytic systems should be aware of the possible biases involved in their design, implementation, and use and the potential harm that biases can cause to individuals and society.
Principle: Principles for Algorithmic Transparency and Accountability, Jan 12, 2017

Published by ACM US Public Policy Council (USACM)

Related Principles

4. Human centricity

AI systems should respect human centred values and pursue benefits for human society, including human beings’ well being, nutrition, happiness, etc. It is key to ensure that people benefit from AI design, development, and deployment while being protected from potential harms. AI systems should be used to promote human well being and ensure benefit for all. Especially in instances where AI systems are used to make decisions about humans or aid them, it is imperative that these systems are designed with human benefit in mind and do not take advantage of vulnerable individuals. Human centricity should be incorporated throughout the AI system lifecycle, starting from the design to development and deployment. Actions must be taken to understand the way users interact with the AI system, how it is perceived, and if there are any negative outcomes arising from its outputs. One example of how deployers can do this is to test the AI system with a small group of internal users from varied backgrounds and demographics and incorporate their feedback in the AI system. AI systems should not be used for malicious purposes or to sway or deceive users into making decisions that are not beneficial to them or society. In this regard, developers and deployers (if developing or designing inhouse) should also ensure that dark patterns are avoided. Dark patterns refer to the use of certain design techniques to manipulate users and trick them into making decisions that they would otherwise not have made. An example of a dark pattern is employing the use of default options that do not consider the end user’s interests, such as for data sharing and tracking of the user’s other online activities. As an extension of human centricity as a principle, it is also important to ensure that the adoption of AI systems and their deployment at scale do not unduly disrupt labour and job prospects without proper assessment. Deployers are encouraged to take up impact assessments to ensure a systematic and stakeholder based review and consider how jobs can be redesigned to incorporate use of AI. Personal Data Protection Commission of Singapore’s (PDPC) Guide on Job Redesign in the Age of AI6 provides useful guidance to assist organisations in considering the impact of AI on its employees, and how work tasks can be redesigned to help employees embrace AI and move towards higher value tasks.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

· 2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

3. Principle 3 — Accountability

Issue: How can we assure that designers, manufacturers, owners, and operators of A IS are responsible and accountable? [Candidate Recommendations] To best address issues of responsibility and accountability: 1. Legislatures courts should clarify issues of responsibility, culpability, liability, and accountability for A IS where possible during development and deployment (so that manufacturers and users understand their rights and obligations). 2. Designers and developers of A IS should remain aware of, and take into account when relevant, the diversity of existing cultural norms among the groups of users of these A IS. 3. Multi stakeholder ecosystems should be developed to help create norms (which can mature to best practices and laws) where they do not exist because A IS oriented technology and their impacts are too new (including representatives of civil society, law enforcement, insurers, manufacturers, engineers, lawyers, etc.). 4. Systems for registration and record keeping should be created so that it is always possible to find out who is legally responsible for a particular A IS. Manufacturers operators owners of A IS should register key, high level parameters, including: • Intended use • Training data training environment (if applicable) • Sensors real world data sources • Algorithms • Process graphs • Model features (at various levels) • User interfaces • Actuators outputs • Optimization goal loss function reward function

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems in Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017

Principle 7 – Accountability & Responsibility

The accountability and responsibility principle holds designers, vendors, procurers, developers, owners and assessors of AI systems and the technology itself ethically responsible and liable for the decisions and actions that may result in potential risk and negative effects on individuals and communities. Human oversight, governance, and proper management should be demonstrated across the entire AI System Lifecycle to ensure that proper mechanisms are in place to avoid harm and misuse of this technology. AI systems should never lead to people being deceived or unjustifiably impaired in their freedom of choice. The designers, developers, and people who implement the AI system should be identifiable and assume responsibility and accountability for any potential damage the technology has on individuals or communities, even if the adverse impact is unintended. The liable parties should take necessary preventive actions as well as set risk assessment and mitigation strategy to minimize the harm due to the AI system. The accountability and responsibility principle is closely related to the fairness principle. The parties responsible for the AI system should ensure that the fairness of the system is maintained and sustained through control mechanisms. All parties involved in the AI System Lifecycle should consider and action these values in their decisions and execution.

Published by SDAIA in AI Ethics Principles, Sept 14, 2022

5 Ensure inclusiveness and equity

Inclusiveness requires that AI used in health care is designed to encourage the widest possible appropriate, equitable use and access, irrespective of age, gender, income, ability or other characteristics. Institutions (e.g. companies, regulatory agencies, health systems) should hire employees from diverse backgrounds, cultures and disciplines to develop, monitor and deploy AI. AI technologies should be designed by and evaluated with the active participation of those who are required to use the system or will be affected by it, including providers and patients, and such participants should be sufficiently diverse. Participation can also be improved by adopting open source software or making source codes publicly available. AI technology – like any other technology – should be shared as widely as possible. AI technologies should be available not only in HIC and for use in contexts and for needs that apply to high income settings but they should also be adaptable to the types of devices, telecommunications infrastructure and data transfer capacity in LMIC. AI developers and vendors should also consider the diversity of languages, ability and forms of communication around the world to avoid barriers to use. Industry and governments should strive to ensure that the “digital divide” within and between countries is not widened and ensure equitable access to novel AI technologies. AI technologies should not be biased. Bias is a threat to inclusiveness and equity because it represents a departure, often arbitrary, from equal treatment. For example, a system designed to diagnose cancerous skin lesions that is trained with data on one skin colour may not generate accurate results for patients with a different skin colour, increasing the risk to their health. Unintended biases that may emerge with AI should be avoided or identified and mitigated. AI developers should be aware of the possible biases in their design, implementation and use and the potential harm that biases can cause to individuals and society. These parties also have a duty to address potential bias and avoid introducing or exacerbating health care disparities, including when testing or deploying new AI technologies in vulnerable populations. AI developers should ensure that AI data, and especially training data, do not include sampling bias and are therefore accurate, complete and diverse. If a particular racial or ethnic minority (or other group) is underrepresented in a dataset, oversampling of that group relative to its population size may be necessary to ensure that an AI technology achieves the same quality of results in that population as in better represented groups. AI technologies should minimize inevitable power disparities between providers and patients or between companies that create and deploy AI technologies and those that use or rely on them. Public sector agencies should have control over the data collectedby private health care providers, and their shared responsibilities should be defined and respected. Everyone – patients, health care providers and health care systems – should be able to benefit from an AI technology and not just the technology providers. AI technologies should be accompanied by means to provide patients with knowledge and skills to better understand their health status and to communicate effectively with health care providers. Future health literacy should include an element of information technology literacy. The effects of use of AI technologies must be monitored and evaluated, including disproportionate effects on specific groups of people when they mirror or exacerbate existing forms of bias and discrimination. Special provision should be made to protect the rights and welfare of vulnerable persons, with mechanisms for redress if such bias and discrimination emerges or is alleged.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021