transparent and explicable, eg, applying a “human on the loop” approach to ensure that fintech players have the knowledge and ability to control AI based application processes, and can explain them to consumers; and

Principle: Ethical guidelines on use of artificial intelligence (AI) in Indonesia, Febrary 12, 2024

Published by Ministry of Communication and Informatics

Related Principles

1. Transparency and Explainability

Transparency refers to providing disclosure on when an AI system is being used and the involvement of an AI system in decision making, what kind of data it uses, and its purpose. By disclosing to individuals that AI is used in the system, individuals will become aware and can make an informed choice of whether to use the AIenabled system. Explainability is the ability to communicate the reasoning behind an AI system’s decision in a way that is understandable to a range of people, as it is not always clear how an AI system has arrived at a conclusion. This allows individuals to know the factors contributing to the AI system’s recommendation. In order to build public trust in AI, it is important to ensure that users are aware of the use of AI technology and understand how information from their interaction is used and how the AI system makes its decisions using the information provided. In line with the principle of transparency, deployers have a responsibility to clearly disclose the implementation of an AI system to stakeholders and foster general awareness of the AI system being used. With the increasing use of AI in many businesses and industries, the public is becoming more aware and interested in knowing when they are interacting with AI systems. Knowing when and how AI systems interact with users is also important in helping users discern the potential harm of interacting with an AI system that is not behaving as intended. In the past, AI algorithms have been found to discriminate against female job applicants and have failed to accurately recognise the faces of dark skinned women. It is important for users to be aware of the expected behaviour of the AI systems so they can make more informed decisions about the potential harm of interacting with AI systems. An example of transparency in an AI enabled ecommerce platform is informing users that their purchase history is used by the platform’s recommendation algorithm to identify similar products and display them on the users’ feeds. In line with the principle of explainability, developers and deployers designing, developing, and deploying AI systems should also strive to foster general understanding among users of how such systems work with simple and easy to understand explanations on how the AI system makes decisions. Understanding how AI systems work will help humans know when to trust its decisions. Explanations can have varying degrees of complexity, ranging from a simple text explanation of which factors more significantly affected the decisionmaking process to displaying a heatmap over the relevant text or on the area of an image that led to the system’s decision. For example, when an AI system is used to predict the likelihood of cardiac arrest in patients, explainability can be implemented by informing medical professionals of the most significant factors (e.g., age, blood pressure, etc.) that influenced the AI system’s decision so that they can subsequently make informed decisions on their own. Where “black box” models are deployed, rendering it difficult, if not impossible to provide explanations as to the workings of the AI system, outcome based explanations, with a focus on explaining the impact of decisionmaking or results flowing from the AI system may be relied on. Alternatively, deployers may also consider focusing on aspects relating to the quality of the AI system or preparing information that could build user confidence in the outcomes of an AI system’s processing behaviour. Some of these measures are: • Documenting the repeatability of results produced by the AI system. Some practices to demonstrate repeatability include conducting repeatability assessments to ensure deployments in live environments are repeatable and performing counterfactual fairness testing to ensure that the AI system’s decisions are the same in both the real world and in the counterfactual world. Repeatability refers to the ability of the system to consistently obtain the same results, given the same scenario. Repeatability often applies within the same environment, with the same data and the same computational conditions. • Ensuring traceability by building an audit trail to document the AI system development and decisionmaking process, implementing a black box recorder that captures all input data streams, or storing data appropriately to avoid degradation and alteration. • Facilitating auditability by keeping a comprehensive record of data provenance, procurement, preprocessing, lineage, storage, and security. Such information can also be centralised digitally in a process log to increase capacity to cater the presentation of results to different tiers of stakeholders with different interests and levels of expertise. Deployers should, however, note that auditability does not necessarily entail making certain confidential information about business models or intellectual property related to the AI system publicly available. A risk based approach can be taken towards identifying the subset of AI enabled features in the AI system for which implemented auditability is necessary to align with regulatory requirements or industry practices. • Using AI Model Cards, which are short documents accompanying trained machine learning models that disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. In cases where AI systems are procured directly from developers, deployers will have to work together with these developers to achieve transparency. More on this will be covered in later sections of the Guide.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

4. Human centricity

AI systems should respect human centred values and pursue benefits for human society, including human beings’ well being, nutrition, happiness, etc. It is key to ensure that people benefit from AI design, development, and deployment while being protected from potential harms. AI systems should be used to promote human well being and ensure benefit for all. Especially in instances where AI systems are used to make decisions about humans or aid them, it is imperative that these systems are designed with human benefit in mind and do not take advantage of vulnerable individuals. Human centricity should be incorporated throughout the AI system lifecycle, starting from the design to development and deployment. Actions must be taken to understand the way users interact with the AI system, how it is perceived, and if there are any negative outcomes arising from its outputs. One example of how deployers can do this is to test the AI system with a small group of internal users from varied backgrounds and demographics and incorporate their feedback in the AI system. AI systems should not be used for malicious purposes or to sway or deceive users into making decisions that are not beneficial to them or society. In this regard, developers and deployers (if developing or designing inhouse) should also ensure that dark patterns are avoided. Dark patterns refer to the use of certain design techniques to manipulate users and trick them into making decisions that they would otherwise not have made. An example of a dark pattern is employing the use of default options that do not consider the end user’s interests, such as for data sharing and tracking of the user’s other online activities. As an extension of human centricity as a principle, it is also important to ensure that the adoption of AI systems and their deployment at scale do not unduly disrupt labour and job prospects without proper assessment. Deployers are encouraged to take up impact assessments to ensure a systematic and stakeholder based review and consider how jobs can be redesigned to incorporate use of AI. Personal Data Protection Commission of Singapore’s (PDPC) Guide on Job Redesign in the Age of AI6 provides useful guidance to assist organisations in considering the impact of AI on its employees, and how work tasks can be redesigned to help employees embrace AI and move towards higher value tasks.

Published by ASEAN in ASEAN Guide on AI Governance and Ethics, 2024

· 10. Transparency

Transparency concerns the reduction of information asymmetry. Explainability – as a form of transparency – entails the capability to describe, inspect and reproduce the mechanisms through which AI systems make decisions and learn to adapt to their environments, as well as the provenance and dynamics of the data that is used and created by the system. Being explicit and open about choices and decisions concerning data sources, development processes, and stakeholders should be required from all models that use human data or affect human beings or can have other morally significant impact.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

Second principle: Responsibility

Human responsibility for AI enabled systems must be clearly established, ensuring accountability for their outcomes, with clearly defined means by which human control is exercised throughout their lifecycles. The increased speed, complexity and automation of AI enabled systems may complicate our understanding of pre existing concepts of human control, responsibility and accountability. This may occur through the sorting and filtering of information presented to decision makers, the automation of previously human led processes, or processes by which AI enabled systems learn and evolve after their initial deployment. Nevertheless, as unique moral agents, humans must always be responsible for the ethical use of AI in Defence. Human responsibility for the use of AI enabled systems in Defence must be underpinned by a clear and consistent articulation of the means by which human control is exercised, and the nature and limitations of that control. While the level of human control will vary according to the context and capabilities of each AI enabled system, the ability to exercise human judgement over their outcomes is essential. Irrespective of the use case, Responsibility for each element of an AI enabled system, and an articulation of risk ownership, must be clearly defined from development, through deployment – including redeployment in new contexts – to decommissioning. This includes cases where systems are complex amalgamations of AI and non AI components, from multiple different suppliers. In this way, certain aspects of responsibility may reach beyond the team deploying a particular system, to other functions within the MOD, or beyond, to the third parties which build or integrate AI enabled systems for Defence. Collectively, these articulations of human control, responsibility and risk ownership must enable clear accountability for the outcomes of any AI enabled system in Defence. There must be no deployment or use without clear lines of responsibility and accountability, which should not be accepted by the designated duty holder unless they are satisfied that they can exercise control commensurate with the various risks.

Published by The Ministry of Defence (MOD), United Kingdom in Ethical Principles for AI in Defence, Jun 15, 2022

Third principle: Understanding

AI enabled systems, and their outputs, must be appropriately understood by relevant individuals, with mechanisms to enable this understanding made an explicit part of system design. Effective and ethical decision making in Defence, from the frontline of combat to back office operations, is always underpinned by appropriate understanding of context by those making decisions. Defence personnel must have an appropriate, context specific understanding of the AI enabled systems they operate and work alongside. This level of understanding will naturally differ depending on the knowledge required to act ethically in a given role and with a given system. It may include an understanding of the general characteristics, benefits and limitations of AI systems. It may require knowledge of a system’s purposes and correct environment for use, including scenarios where a system should not be deployed or used. It may also demand an understanding of system performance and potential fail states. Our people must be suitably trained and competent to operate or understand these tools. To enable this understanding, we must be able to verify that our AI enabled systems work as intended. While the ‘black box’ nature of some machine learning systems means that they are difficult to fully explain, we must be able to audit either the systems or their outputs to a level that satisfies those who are duly and formally responsible and accountable. Mechanisms to interpret and understand our systems must be a crucial and explicit part of system design across the entire lifecycle. This requirement for context specific understanding based on technically understandable systems must also reach beyond the MOD, to commercial suppliers, allied forces and civilians. Whilst absolute transparency as to the workings of each AI enabled system is neither desirable nor practicable, public consent and collaboration depend on context specific shared understanding. What our systems do, how we intend to use them, and our processes for ensuring beneficial outcomes result from their use should be as transparent as possible, within the necessary constraints of the national security context.

Published by The Ministry of Defence (MOD), United Kingdom in Ethical Principles for AI in Defence, Jun 15, 2022